
|    | Α | В                                                                                                                                  | С         | D                             | Е                                       | F                                     | G                                                             | Н                                | I                           |  |  |  |  |  |  |
|----|---|------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------|----------------------------------|-----------------------------|--|--|--|--|--|--|
| 1  |   |                                                                                                                                    |           |                               |                                         |                                       |                                                               |                                  |                             |  |  |  |  |  |  |
| 3  |   |                                                                                                                                    |           |                               |                                         |                                       |                                                               |                                  |                             |  |  |  |  |  |  |
| 4  |   | Tableau comparatif des modes de démarrage_memotech_page 341                                                                        |           |                               |                                         |                                       |                                                               |                                  |                             |  |  |  |  |  |  |
| 5  |   | mode de<br>démarrage                                                                                                               | symbole   | Couple au<br>démarrage<br>M'd | Courant au<br>démarrage<br>I'd          | Nombre<br>d'étapes<br>de<br>démarrage | Nombre de<br>contacteurs                                      | temps de<br>démarrage<br>td maxi | Adaptation<br>de M'd et I'd |  |  |  |  |  |  |
| 6  |   | Direct                                                                                                                             | D         | Md<br>(1)                     | Id (1)                                  | 1                                     | 1                                                             | 8 s                              | non                         |  |  |  |  |  |  |
| 7  |   | Étoile-Triangle                                                                                                                    | Y.D       | Md / 3                        | Id/3                                    | 2                                     | 3                                                             | 8 s                              | non                         |  |  |  |  |  |  |
| 8  |   | Étoile<br>Triangle résistance<br>Triangle                                                                                          | Y.DR.D    | Md / 3                        | Id/3                                    | 3                                     | 4                                                             | 10 s                             | non                         |  |  |  |  |  |  |
| 9  |   | Résistances<br>statoriques                                                                                                         | RS        | K².Md                         | K·Id                                    | ne                                    | ne                                                            | ≈ 15 s                           | oui                         |  |  |  |  |  |  |
| 10 |   | Autotransformateur                                                                                                                 | ΑΤ        | K².Md                         | 1,1 K².Id                               | ne≥3                                  | si ne = $3 \rightarrow 3$<br>si ne > $3 \rightarrow$ ne + $1$ | ≈ 15 s                           | oui                         |  |  |  |  |  |  |
| 11 |   | Résistances<br>rotoriques *                                                                                                        | RR        | ≤ M <sub>ma×</sub>            | $\left(Q + \frac{M'_d}{M_n}\right) I_n$ | ne                                    | ne                                                            | ≈ 25 s                           | oui                         |  |  |  |  |  |  |
| 12 | · | * Nécessite un moteur                                                                                                              | à bagues  | (rotor bobiné)                | ou un moteurà co                        | upleur (rotor                         | · bobiné).                                                    |                                  |                             |  |  |  |  |  |  |
| 13 |   | (1) Ce sont les valeurs                                                                                                            | données d | ans le tableau (              | ( §11,1,12).                            |                                       |                                                               |                                  |                             |  |  |  |  |  |  |
| 14 |   | K = U'/U avec U' tension au bornes du moteur au démarrage.                                                                         |           |                               |                                         |                                       |                                                               |                                  |                             |  |  |  |  |  |  |
| 15 |   | Seuls les démarrage du type RS, AT et RR permettent d'adapter le couple au démarrage M'd en fonction des besoins de l'utilisateur. |           |                               |                                         |                                       |                                                               |                                  |                             |  |  |  |  |  |  |
| 16 |   |                                                                                                                                    |           |                               |                                         |                                       |                                                               |                                  |                             |  |  |  |  |  |  |
| 17 |   |                                                                                                                                    |           |                               |                                         |                                       |                                                               |                                  |                             |  |  |  |  |  |  |



| Memortech_page 341  Modes de Symbole Couple au demarrage $M_d$ defeneres defeneres $M_d$ def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | C                                  | D            | E                           | F                                       | G                   | Н                             |          | J             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|--------------|-----------------------------|-----------------------------------------|---------------------|-------------------------------|----------|---------------|
| Direct   D   M <sub>d</sub>   I <sub>d</sub>   1   1   1   8 s   non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                    |              | memote                      | ch_page 3                               | 41                  |                               |          |               |
| Direct   D   M <sub>d</sub>   I <sub>d</sub>   1   1   1   8 s   non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                    |              |                             |                                         |                     |                               |          |               |
| Direct   D   M <sub>d</sub>   I <sub>d</sub>   1   1   1   8 s   non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                    |              |                             |                                         |                     |                               |          |               |
| Direct   D   M <sub>d</sub>   I <sub>d</sub>   1   1   1   8 s   non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Modes de                           | Symbole      | Couple au                   | Courant au                              | Nombre              | Nombre de                     | 4        | Adaptation    |
| Étoile-Triangle  V.D.  My3  Ly3  2  3  8 s.  non  Figure résistance Triangle  Résistances Resistances statoriques  RS  K². M <sub>6</sub> Autotransformateur  AT  K². M <sub>6</sub> 1.1. K². L <sub>8</sub> 1.1. K². L <sub>8</sub> R. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                    |              |                             |                                         |                     |                               |          | de M'd et l'd |
| Etolie Triangle VD $M_{e}/3$ $J_{e}/3$ 2 3 8 8 non non Triangle Teiststance YDRD $M_{e}/3$ $J_{e}/3$ 3 4 10 8 non non Triangle Resistances RS $K^{2}$ . $M_{d}$ $K$ . $J_{d}$ $N_{e}$ 3 $J_{e}/3$ 3 4 10 8 non non Triangle Resistances Statoriques RS $K^{2}$ . $M_{d}$ $K$ . $J_{d}$ $N_{e}$ 3 $J_{e}/3$ $J_{e}/3$ 3 $J_{e}/3$ 4 10 8 $J_{e}/3$ 6 15 15 9 0uii Resistances rotoriques * RR $J_{e}/3$ 8 $J_{e}/3$ 8 $J_{e}/3$ 9 $J_{e}/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Direct                             | D            |                             | POPPER NO.                              | 1                   | 1                             | 8 s      | non           |
| Triangle résistance Triangle  Résistances Statoriques  RS $K^2$ . $M_d$ $K$ . $I_d$ $I_d$ $I_d$ $I_d$ $I_d$ $I_d$ $I_d$ Autotransformateur  AT $I_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Étoile-Triangle                    | Y.D          |                             |                                         | 2                   | 3                             | 8 s      | non           |
| Résistances statoriques RS $K^2$ . $M_c$ $K$ . $I_d$ $n_e$ $n_e$ $n_e$ = 15 s oui Autotransformateur AT $K^2$ . $M_d$ 1,1. $K^2$ . $I_d$ $n_e$ 3 $\frac{\sin n_e = 3 \to 3}{\sin n_e > 3 \to n_e + 1}$ = 15 s oui Résistances RR $\frac{\pi}{N}$ |            | Triangle résistance                | Y.DR.D       | M <sub>6</sub> /3           | 14/3                                    | 3                   | 4                             | 10 s     | non           |
| Résistances rotoriques*  RR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Résistances                        | RS           | K² . M <sub>d</sub>         | K. I <sub>d</sub>                       | n <sub>e</sub>      | n <sub>e</sub>                | ≃ 15 s   | oui           |
| **Nécessite un moteur à bagues (rotor bobiné) ou un moteur à coupleur (rotor bobiné)  (1) Ce sont les valeurs données dans le tableau (§ 11.1.5.3.) ou les tableaux (§ 11.1.12.).  **K = U' / U avec U' tension aux bornes du moteur au démarrage.  Seuls les démarrages du type RS, AT et RR permettent d'adapter le couple au démarrage $M'_d$ en fonction des besoins de l'utilisateur.  Exemple : Moteur LEROY-SOMER de 30 kW - Alimentation triphasée 400 V.  Couple au démarrage $M'_d$ souhaité : $M'_d/M_n \simeq 1,4$ $n_g = 1500\text{mir}^{-1}$ .  Machine entraînée $M_t$ du type $kn^2$ .  a) Moteur rotor à cage $\rightarrow$ type LS 200 LT (§ 11.1.12.4.) $I_n$ sous 400 V = 60 A; $M_d/M_n \simeq 2.5$ ; $I_d/I_n = 6.3$ .  - Démarrage RS $\rightarrow$ $K^2 = M'_d/M_a = 1.4/2,5 = 0.56 \rightarrow K = 0.75 K = U' / U = 0.75 \times 6.3 \times 60 = 284\text{A}.  (U'; M'_d; I'_d = \text{valeurs au démarrage})  - Démarrage AT \rightarrow K^2 = M'_d/M_n = 0.56 \rightarrow K = 0.75.  U' = KU = 0.75 \times 400 = 300\text{V}.  I'_d = 1.1K^2 I_d = 1.1 \times 0.56 \times 6.3 \times 60 = 233\text{A}.  b) Moteur rotor bobiné \rightarrow type FB 225 Mv/4 (§ 11.1.12.4.)  I_n sous 400 V = 59 A; I_m_{\text{max}}/M_n = 3.  - Démarrage RR \rightarrow U' = U = 400\text{V}.  M'_d/M_n < M_{\text{max}}/M_n  - O dépend du couple souhaité au démarrage M'_d et du type du couple résistant M_t de la machine entraînér Valeurs de O (§ 11.1.9.6.).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Autotransformateur                 | AT           | K². M <sub>d</sub>          | 1,1 . K <sup>2</sup> . I <sub>d</sub>   | n <sub>e</sub> ≥ 3  |                               | ≃ 15 s   | oui           |
| *Nécessite un moteur à bagues (rotor bobiné) ou un moteur à coupleur (rotor bobiné)  (1) Ce sont les valeurs données dans le tableau (§ 11.1.5.3.) ou les tableaux (§ 11.1.12.).  *K = U' / U avec U' tension aux bornes du moteur au démarrage.  Seuls les démarrages du type RS, AT et RR permettent d'adapter le couple au démarrage M' <sub>d</sub> en fonction des besoins de l'utilisateur.  *Exemple: Moteur LEROY-SOMER de 30 kW - Alimentation triphasée 400 V.  Couple au démarrage M' <sub>d</sub> souhaité: M' <sub>d</sub> /M <sub>n</sub> = 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                    | RR           | ≤ M <sub>max</sub>          | $\left(Q + \frac{M'_d}{M_D}\right)I_D$  | n <sub>e</sub>      | n <sub>o</sub>                | ≃ 25 s   | oui           |
| T1.1.7.2. Seuls les démarrages du type RS, AT et RR permettent d'adapter le couple au démarrage $M'_d$ en fonction des besoins de l'utilisateur.  Exemple: Moteur LEROY-SOMER de 30 kW – Alimentation triphasée 400 V. Couple au démarrage $M'_d$ souhaité: $M'_d/M_h \simeq 1.4$ $n_s = 1500\mathrm{mir}^{-1}$ . Machine entraînée $M_r$ du type $kn^2$ .  a) Moteur rotor à cage $\to$ type LS 200 LT (§ 11.1.12.4.) $I_n\mathrm{sous}400\mathrm{V} = 60\mathrm{A}\;;  M_d/M_h \simeq 2.5\;;  I_d/I_h = 6.3.$ $-\mathrm{Démarrage}\mathrm{RS} \to K^2 = M'_d/M_d = 1.4/2.5 = 0.56 \to K = 0.75$ $K = U'/U = 0.75 \to U' = KU = 0.75 \times 400 = 300\mathrm{V}$ $I'_d = KI_d = 0.75 \times 6.3 \times 60 = 284\mathrm{A}.$ $(U'; M'_d; I'_d = \mathrm{valeurs}\mathrm{au}\mathrm{démarrage})$ $-\mathrm{Démarrage}\mathrm{AT} \to K^2 = M'_d/M_h = 0.56 \to K = 0.75.$ $U' = KU = 0.75 \times 400 = 300\mathrm{V}.$ $I'_d = 1.1K^2 \qquad I_d = 1.1 \times 0.56 \times 6.3 \times 60 = 233\mathrm{A}.$ b) Moteur rotor bobiné $\to$ type FB 225 Mv/4 (§ 11.1.1.2.4.) $I_h\mathrm{sous}400\mathrm{V} = 59\mathrm{A}\;; M_{\mathrm{max}}/M_h = 3.$ $-\mathrm{Démarrage}\mathrm{RR} \to U' = U = 400\mathrm{V}.$ $M'_d/M_h < M_{\mathrm{max}}/M_h$ $- Q\mathrm{dépend}\mathrm{du}\mathrm{couple}\mathrm{souhait\acute{e}}\mathrm{au}\mathrm{démarrage}M'_d\mathrm{e}\mathrm{td}\mathrm{type}\mathrm{du}\mathrm{couple}\mathrm{r\acute{e}sistant}M_h\mathrm{de}\mathrm{la}\mathrm{machine}\mathrm{entraîn\acute{e}the}\mathrm{Valeurs}\mathrm{de}Q(\S11.1.9.6.).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | * Nécessite un mot                 | eur à bagi   | ues (rotor bobin            | ,                                       | ur à couple         | eur (rotor bobin              | é)       |               |
| Seuls les démarrages du type RS, AT et RR permettent d'adapter le couple au démarrage $M'_d$ en fonction des besoins de l'utilisateur.  Exemple : Moteur LEROY-SOMER de 30 kW – Alimentation triphasée 400 V.  Couple au démarrage $M'_d$ souhaité : $M'_d/M_n \simeq 1,4$ $n_s = 1500\mathrm{mirr^{-1}}$ .  Bachine entraînée $M_r$ du type $kn^2$ .  a) Moteur rotor à cage $\to$ type LS 200 LT (§ 11.1.12.4.) $l_n$ sous 400 V = 60 A; $M_d/M_n \simeq 2,5$ ; $l_d/l_n = 6,3$ .  Démarrage RS $\to$ $K^2 = M'_d/M_d = 1,4/2,5 = 0,56 \to K = 0,75 K = U'/U = 0,75 \to U' = KU = 0,75 \times 400 = 300\mathrm{V} l_d = K l_d = 0,75 \times 6,3 \times 60 = 284\mathrm{A}.  (U'; M'_d; l'_d = \mathrm{valeurs} au démarrage)  Démarrage AT \to K^2 = M'_d/M_n = 0,56 \to K = 0,75.  U' = K U = 0,75 \times 400 = 300\mathrm{V}.  l_d = 1,1K^2 l_d = 1,1\mathrm{V} \times 0,56 \times 6,3 \times 60 = 233\mathrm{A}.  b) Moteur rotor bobiné \to type FB 225 Mv/4 (§ 11.1.12.4.)  l_n sous 400 V = 59 A; M_{\mathrm{max}}/M_n = 3.  Démarrage RR \to U' = U = 400\mathrm{V}.  M'_d/M_n < M_{\mathrm{max}}/M_n - Q dépend du couple souhaité au démarrage M'_d et du type du couple résistant M_r de la machine entraînée Valeurs de Q (§ 11.1.9.6.).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                    |              |                             |                                         |                     | ableaux (§ 11.1               | .12.).   |               |
| des besoins de l'utilisateur.  Exemple : Moteur LEROY-SOMER de 30 kW – Alimentation triphasée 400 V.  Couple au démarrage $M'_d$ souhaité : $M'_d/M_n \simeq 1,4$ $n_s = 1500\mathrm{mir}^{-1}$ .  Machine entraînée $M_r$ du type $kn^2$ .  a) Moteur rotor à cage $\to$ type LS 200 LT (§ 11.1.12.4.) $l_n$ sous $400\mathrm{V} = 60\mathrm{A}$ ; $M_d/M_n \simeq 2,5$ ; $l_d/l_n = 6,3$ .  Démarrage RS $\to K^2 = M'_d/M_d = 1,4/2,5 = 0,56 \to K = 0,75$ $K = U'/U = 0,75 \to U' = KU = 0,75 \times 400 = 300\mathrm{V}$ $l'_d = K  l_d = 0,75 \times 6,3 \times 60 = 284\mathrm{A}$ .  ( $U'$ ; $M'_d$ ; $l'_d$ = valeurs au démarrage)  Démarrage AT $\to K^2 = M'_d/M_n = 0,56 \to K = 0,75$ . $U' = KU = 0,75 \times 400 = 300\mathrm{V}$ . $l'_d = 1,1K^2$ $l_d = 1,1 \times 0,56 \times 6,3 \times 60 = 233\mathrm{A}$ .  b) Moteur rotor bobiné $\to$ type FB 225 Mv/4 (§ 11.1.12.4.) $l_n$ sous $400\mathrm{V} = 59\mathrm{A}$ ; $M_{\mathrm{max}}/M_n = 3$ .  Démarrage RR $\to U' = U = 400\mathrm{V}$ . $M'_d/M_n < M_{\mathrm{max}}/M_n$ $- Q$ dépend du couple souhaité au démarrage $M'_d$ et du type du couple résistant $M_r$ de la machine entraînée Valeurs de $Q$ (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                    |              |                             |                                         |                     |                               |          |               |
| TABLEAU COMPARATIF DES MODES DE DÉMARRAGE  Couple au démarrage $M'_d$ souhaité : $M'_d/M_n \simeq 1,4$ $n_g = 1500\mathrm{mir}^{-1}$ . Machine entraînée $M_r$ du type $kn^2$ .  a) Moteur rotor à cage $\rightarrow$ type LS 200 LT (§ 11.1.12.4.) $I_n\mathrm{sous}400\mathrm{V} = 60\mathrm{A}\;;  M_d/M_n \simeq 2,5\;;  I_d/I_n = 6,3.$ $-\mathrm{Démarrage}\mathrm{RS} \rightarrow K^2 = M'_d/M_d = 1,4/2,5 = 0,56 \rightarrow K = 0,75$ $K = U'/U = 0,75 \rightarrow U' = KU = 0,75 \times 400 = 300\mathrm{V}$ $I'_d = KI_d = 0,75 \times 6,3 \times 60 = 284\mathrm{A}.$ $(U'\;; M'_d\;; I'_d = \mathrm{valeurs}\mathrm{au}\mathrm{démarrage})$ $-\mathrm{Démarrage}\mathrm{AT} \rightarrow K^2 = M'_d/M_n = 0,56 \rightarrow K = 0,75.$ $U' = KU = 0,75 \times 400 = 300\mathrm{V}.$ $I'_d = 1,1K^2 \qquad I_d = 1,1 \times 0,56 \times 6,3 \times 60 = 233\mathrm{A}.$ b) Moteur rotor bobiné $\rightarrow$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_n\mathrm{sous}400\mathrm{V} = 59\mathrm{A}\;; M_{max}/M_n = 3.$ $-\mathrm{Démarrage}\mathrm{RR} \rightarrow U' = U = 400\mathrm{V}.$ $M'_d/M_n < M_{max}/M_n$ $-\mathrm{O}\mathrm{dépend}\mathrm{du}\mathrm{couple}\mathrm{souhait\'e}\mathrm{au}\mathrm{démarrage}M'_d\mathrm{et}\mathrm{du}\mathrm{type}\mathrm{du}\mathrm{couple}\mathrm{r\'esistant}M_r\mathrm{de}\mathrm{la}\mathrm{machine}\mathrm{entraîn\'et}\mathrm{Valeurs}\mathrm{de}Q(\S11.1.9.6.).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                    |              | HS, AT ET HH                | permettent d'ac                         | dapter le c         | ouple au demai                | rrage M  | en tonction   |
| Couple au démarrage $M'_d$ souhaité : $M'_d/M_n \simeq 1,4$ $n_s = 1500\mathrm{mir}^{-1}$ . Machine entraînée $M_r$ du type $kn^2$ .  a) Moteur rotor à cage $\to$ type LS 200 LT (§ 11.1.12.4.) $I_n \mathrm{ sous}\ 400\ V = 60\ A\ ; \qquad M_d/M_n \simeq 2,5\ ; \qquad I_d/I_n = 6,3.$ $-\mathrm{Démarrage}\ RS \to K^2 = M'_d/M_d = 1,4/2,5 = 0,56 \to K = 0,75$ $K = U'\ /\ U = 0,75 \to U' = KU = 0,75 \times 400 = 300\ V$ $I'_d = K\ I_d = 0,75 \times 6,3 \times 60 = 284\ A.$ $(U'\ ; M'_d\ ; I'_d = \mathrm{valeurs}\ \mathrm{au}\ \mathrm{démarrage})$ $-\mathrm{Démarrage}\ AT \to K^2 = M'_d/M_n = 0,56 \to K = 0,75.$ $U' = K\ U = 0,75 \times 400 = 300\ V.$ $I'_d = 1,1\ K^2 \qquad I_d = 1,1 \times 0,56 \times 6,3 \times 60 = 233\ A.$ b) Moteur rotor bobiné $\to$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_n \mathrm{ sous}\ 400\ V = 59\ A\ ; M_{max}\ /\ M_n = 3.$ $-\mathrm{Démarrage}\ RR \to U' = U = 400\ V.$ $M'_d/M_n < M_{max}\ /\ M_n$ $- Q\ dépend\ du\ couple\ souhaité\ au\ démarrage\ M'_d\ et\ du\ type\ du\ couple\ résistant\ M_r\ de\ la\ machine\ entraînée Valeurs\ de\ Q\ (§ 11.1.9.6.).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Exemple : Moteur                   | LEROY-S      | OMER de 30 kV               | V – Alimentatio                         | on triphasé         | e 400 V.                      |          |               |
| a) Moteur rotor à cage $\rightarrow$ type LS 200 LT (§ 11.1.12.4.) $I_n \text{ sous } 400 \text{ V} = 60 \text{ A}; \qquad M_d/M_n \approx 2,5; \qquad I_d/I_n = 6,3.$ $- \text{ Démarrage RS} \rightarrow K^2 = M'_d/M_d = 1,4/2,5 = 0,56 \rightarrow K = 0,75$ $K = U'/U = 0,75 \rightarrow U' = KU = 0,75 \times 400 = 300 \text{ V}$ $I'_d = K I_d = 0,75 \times 6,3 \times 60 = 284 \text{ A}.$ $(U'; M'_d; I'_d = \text{ valeurs au démarrage})$ $- \text{ Démarrage AT} \rightarrow K^2 = M'_d/M_n = 0,56 \rightarrow K = 0,75.$ $U' = KU = 0,75 \times 400 = 300 \text{ V}.$ $I'_d = 1,1 \text{ K}^2 \qquad I_d = 1,1 \times 0,56 \times 6,3 \times 60 = 233 \text{ A}.$ b) Moteur rotor bobiné $\rightarrow$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_n \text{ sous } 400 \text{ V} = 59 \text{ A}; M_{\text{max}} / M_n = 3.$ $- \text{ Démarrage RR} \rightarrow U' = U = 400 \text{ V}.$ $M'_d/M_n < M_{\text{max}} / M_n$ $- Q \text{ dépend du couple souhaité au démarrage } M'_d \text{ et du type du couple résistant } M_r \text{ de la machine entraînére Valeurs de } Q \text{ (§ 11.1.9.6.)}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COMPARATIF | Couple a                           | u démarra    | age M' <sub>d</sub> souhait | $\dot{e}: M'_d/M_n \simeq 1$            | ,4 n <sub>s</sub> = | 1 500 min <sup>-1</sup> .     |          |               |
| $I_{\rm n} \ {\rm sous} \ 400 \ {\rm V} = 60 \ {\rm A} \ ; \qquad M_{\rm d}/M_{\rm n} \simeq 2.5 \ ; \qquad I_{\rm d}/I_{\rm n} = 6.3.$ $- \ {\rm D\'emarrage} \ {\rm RS} \ \rightarrow \ K^2 = M'_{\rm d}/M_{\rm d} = 1.4/2.5 = 0.56 \ \rightarrow \ K = 0.75 \ K = U' / U = 0.75 \ \rightarrow \ U' = KU = 0.75 \times 400 = 300 \ {\rm V} \ I'_{\rm d} = K \ I_{\rm d} = 0.75 \times 6.3 \times 60 = 284 \ {\rm A.} \ (U' \ ; M'_{\rm d} \ ; I'_{\rm d} = {\rm valeurs} \ {\rm au} \ {\rm d\'emarrage})$ $- \ {\rm D\'emarrage} \ {\rm AT} \ \rightarrow \ K^2 = M'_{\rm d}/M_{\rm n} = 0.56 \ \rightarrow \ K = 0.75. \ U' = K \ U = 0.75 \times 400 = 300 \ {\rm V}. \ I'_{\rm d} = 1.1 \ K^2 \ I_{\rm d} = 1.1 \times 0.56 \times 6.3 \times 60 = 233 \ {\rm A.}$ ${\rm b) \ Moteur \ rotor \ bobin\'e} \ \rightarrow \ {\rm type} \ {\rm FB} \ 225 \ {\rm Mv/4} \ (\S \ 11.1.12.4.) \ I_{\rm n} \ {\rm sous} \ 400 \ {\rm V} = 59 \ {\rm A} \ ; \ M_{\rm max} \ / M_{\rm n} = 3.$ $- \ {\rm D\'emarrage} \ {\rm RR} \ \rightarrow \ U' = U = 400 \ {\rm V}. \ M'_{\rm d}/M_{\rm n} < M_{\rm max} \ / M_{\rm n}$ $- \ {\rm Q\ d\'epend\ du\ couple\ souhait\'e\ au\ d\'emarrage} \ M'_{\rm d} \ {\rm et\ du\ type\ du\ couple\ r\'esistant\ } M_{\rm r} \ {\rm de\ la\ machine\ entra\^{ln\'et}} \ {\rm Valeurs\ de\ } \ {\rm Q\ (\S \ 11.1.9.6.)}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Machine                            | entraînée    | M <sub>r</sub> du type kn²  | 2.                                      |                     |                               |          |               |
| $I_{\rm n} \ {\rm sous} \ 400 \ {\rm V} = 60 \ {\rm A} \ ; \qquad M_{\rm d}/M_{\rm n} \simeq 2.5 \ ; \qquad I_{\rm d}/I_{\rm n} = 6.3.$ $- \ {\rm D\'emarrage} \ {\rm RS} \ \rightarrow \ K^2 = M'_{\rm d}/M_{\rm d} = 1.4/2.5 = 0.56 \ \rightarrow \ K = 0.75 \ K = U' / U = 0.75 \ \rightarrow \ U' = KU = 0.75 \times 400 = 300 \ {\rm V} \ I'_{\rm d} = K \ I_{\rm d} = 0.75 \times 6.3 \times 60 = 284 \ {\rm A.} \ (U' \ ; M'_{\rm d} \ ; I'_{\rm d} = {\rm valeurs} \ {\rm au} \ {\rm d\'emarrage})$ $- \ {\rm D\'emarrage} \ {\rm AT} \ \rightarrow \ K^2 = M'_{\rm d}/M_{\rm n} = 0.56 \ \rightarrow \ K = 0.75. \ U' = K \ U = 0.75 \times 400 = 300 \ {\rm V}. \ I'_{\rm d} = 1.1 \ K^2 \ I_{\rm d} = 1.1 \times 0.56 \times 6.3 \times 60 = 233 \ {\rm A.}$ ${\rm b) \ Moteur \ rotor \ bobin\'e} \ \rightarrow \ {\rm type} \ {\rm FB} \ 225 \ {\rm Mv/4} \ (\S \ 11.1.12.4.) \ I_{\rm n} \ {\rm sous} \ 400 \ {\rm V} = 59 \ {\rm A} \ ; \ M_{\rm max} \ / M_{\rm n} = 3.$ $- \ {\rm D\'emarrage} \ {\rm RR} \ \rightarrow \ U' = U = 400 \ {\rm V}. \ M'_{\rm d}/M_{\rm n} < M_{\rm max} \ / M_{\rm n}$ $- \ {\rm Q\ d\'epend\ du\ couple\ souhait\'e\ au\ d\'emarrage} \ M'_{\rm d} \ {\rm et\ du\ type\ du\ couple\ r\'esistant\ } M_{\rm r} \ {\rm de\ la\ machine\ entra\^{ln\'et}} \ {\rm Valeurs\ de\ } \ {\rm Q\ (\S \ 11.1.9.6.)}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | a) \$4ata aata à aara              |              | 2) TI 000 1T/6              | 11 1 10 1)                              |                     |                               |          |               |
| Démarrage RS → $K^2 = M'_d/M_d = 1,4/2,5 = 0,56 \rightarrow K = 0,75$ $K = U' / U = 0,75 \rightarrow U' = KU = 0,75 \times 400 = 300 \text{ V}$ $I'_d = K I_d = 0,75 \times 6,3 \times 60 = 284 \text{ A}.$ $(U'; M'_d; I'_d = \text{valeurs au démarrage})$ - Démarrage AT → $K^2 = M'_d/M_n = 0,56 \rightarrow K = 0,75.$ $U' = K U = 0,75 \times 400 = 300 \text{ V}.$ $I'_d = 1,1 K^2 - I_d = 1,1 \times 0,56 \times 6,3 \times 60 = 233 \text{ A}.$ b) Moteur rotor bobiné → type FB 225 Mv/4 (§ 11.1.12.4.) $I_n \text{ sous } 400 \text{ V} = 59 \text{ A}; M_{\text{max}} / M_n = 3.$ - Démarrage RR → $U' = U = 400 \text{ V}.$ $M'_d/M_n < M_{\text{max}} / M_n$ - $Q$ dépend du couple souhaité au démarrage $M'_d$ et du type du couple résistant $M_r$ de la machine entraînére Valeurs de $Q$ (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | a) Moteur rotor a ca               |              |                             |                                         | ≈ 25.               | L/L = 63                      |          |               |
| $K = U' / U = 0,75 \rightarrow U' = KU = 0,75 \times 400 = 300 \text{ V}$ $I'_d = K I_d = 0,75 \times 6,3 \times 60 = 284 \text{ A}.$ $(U'; M'_d; I'_d = \text{valeurs au démarrage})$ - Démarrage AT $\rightarrow K^2 = M'_d / M_n = 0,56 \rightarrow K = 0,75.$ $U' = K U = 0,75 \times 400 = 300 \text{ V}.$ $I'_d = 1,1 K^2 \qquad I_d = 1,1 \times 0,56 \times 6,3 \times 60 = 233 \text{ A}.$ b) Moteur rotor bobiné $\rightarrow$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_n \text{ sous } 400 \text{ V} = 59 \text{ A}; M_{\text{max}} / M_n = 3.$ - Démarrage RR $\rightarrow U' = U = 400 \text{ V}.$ $M'_d / M_n < M_{\text{max}} / M_n$ - $Q$ dépend du couple souhaité au démarrage $M'_d$ et du type du couple résistant $M_r$ de la machine entraînére Valeurs de $Q$ (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                    | 'n           | 003 400 7 - 00              | A, Marin                                | 2,0 ,               | 10/1n - 0,0.                  |          |               |
| $I'_{d} = K I_{d} = 0.75 \times 6.3 \times 60 = 284 \text{ A.}$ $(U'; M'_{d}; I'_{d} = \text{valeurs au démarrage})$ $- \text{Démarrage AT} \rightarrow K^{2} = M'_{d}/M_{n} = 0.56 \rightarrow K = 0.75.$ $U' = K U = 0.75 \times 400 = 300 \text{ V.}$ $I'_{d} = 1.1 K^{2}  I_{d} = 1.1 \times 0.56 \times 6.3 \times 60 = 233 \text{ A.}$ b) Moteur rotor bobiné $\rightarrow$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_{n} \text{ sous } 400 \text{ V} = 59 \text{ A}; M_{\text{max}} / M_{n} = 3.$ $- \text{Démarrage RR} \rightarrow U' = U = 400 \text{ V.}$ $M'_{d}/M_{n} < M_{\text{max}} / M_{n}$ $- Q \text{ dépend du couple souhaité au démarrage } M'_{d} \text{ et du type du couple résistant } M_{r} \text{ de la machine entraînére Valeurs de } Q \text{ (§ 11.1.9.6.).}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | <ul> <li>Démarrage RS →</li> </ul> |              |                             |                                         |                     |                               |          |               |
| $(U'; M'_d; I'_d = \text{valeurs au démarrage})$ $- \text{Démarrage AT} \rightarrow K^2 = M'_d/M_n = 0.56 \rightarrow K = 0.75.$ $U' = KU = 0.75 \times 400 = 300 \text{ V}.$ $I'_d = 1.1 K^2 \qquad I_d = 1.1 \times 0.56 \times 6.3 \times 60 = 233 \text{ A}.$ b) Moteur rotor bobiné $\rightarrow$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_n \text{ sous } 400 \text{ V} = 59 \text{ A}; M_{\text{max}} / M_n = 3.$ $- \text{Démarrage RR} \rightarrow U' = U = 400 \text{ V}.$ $M'_d/M_n < M_{\text{max}} / M_n$ $- Q \text{ dépend du couple souhaité au démarrage } M'_d \text{ et du type du couple résistant } M_r \text{ de la machine entraînére Valeurs de } Q \text{ (§ 11.1.9.6.)}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                    |              |                             |                                         | 400 = 300           | V                             |          |               |
| - Démarrage AT → $K^2 = M'_d/M_n = 0.56$ → $K = 0.75$ . $U' = KU = 0.75 \times 400 = 300 \text{ V}.$ $I'_d = 1.1 K^2 \qquad I_d = 1.1 \times 0.56 \times 6.3 \times 60 = 233 \text{ A}.$ b) Moteur rotor bobiné → type FB 225 Mv/4 (§ 11.1.12.4.) $I_n \text{ sous } 400 \text{ V} = 59 \text{ A}; M_{\text{max}} / M_n = 3.$ - Démarrage RR → $U' = U = 400 \text{ V}.$ $M'_d/M_n < M_{\text{max}} / M_n$ - $Q$ dépend du couple souhaité au démarrage $M'_d$ et du type du couple résistant $M_r$ de la machine entraînére Valeurs de $Q$ (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                    |              |                             |                                         |                     |                               |          |               |
| $U' = K \ U = 0.75 \times 400 = 300 \ V.$ $I'_d = 1.1 \ K^2 \qquad I_d = 1.1 \times 0.56 \times 6.3 \times 60 = 233 \ A.$ b) Moteur rotor bobiné $\rightarrow$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_n \text{ sous } 400 \ V = 59 \ A \ ; \ M_{\text{max}} / M_n = 3.$ $- \text{ Démarrage RR} \rightarrow U' = U = 400 \ V.$ $M'_d / M_n < M_{\text{max}} / M_n$ $- Q \text{ dépend du couple souhaité au démarrage } M'_d \text{ et du type du couple résistant } M_r \text{ de la machine entraînére Valeurs de } Q \text{ (§ 11.1.9.6.)}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                    | (U'; M'd     | ; $I'_d$ = valeurs a        | iu demarrage)                           |                     |                               |          |               |
| $U' = K \ U = 0.75 \times 400 = 300 \ V.$ $I'_d = 1.1 \ K^2 \qquad I_d = 1.1 \times 0.56 \times 6.3 \times 60 = 233 \ A.$ b) Moteur rotor bobiné $\rightarrow$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_n \text{ sous } 400 \ V = 59 \ A \ ; \ M_{\text{max}} / M_n = 3.$ $- \text{ Démarrage RR} \rightarrow U' = U = 400 \ V.$ $M'_d / M_n < M_{\text{max}} / M_n$ $- Q \text{ dépend du couple souhaité au démarrage } M'_d \text{ et du type du couple résistant } M_r \text{ de la machine entraînére Valeurs de } Q \text{ (§ 11.1.9.6.)}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | - Démarrage AT →                   | $K^2 = M'_d$ | $/M_n = 0.56 \rightarrow K$ | ( = 0,75.                               |                     |                               |          |               |
| $I'_{\rm d}=1,1\;K^2\qquad I_{\rm d}=1,1\times0,56\times6,3\times60=233\;{\rm A}.$ b) Moteur rotor bobiné $\rightarrow$ type FB 225 Mv/4 (§ 11.1.12.4.) $I_{\rm n}\;{\rm sous}\;400\;{\rm V}=59\;{\rm A}\;;\;M_{\rm max}/M_{\rm n}=3.$ $-{\rm D\'{e}marrage}\;{\rm RR}\to U'=U=400\;{\rm V}.$ $M'_{\rm d}/M_{\rm n}< M_{\rm max}/M_{\rm n}$ $-{\it Q}\;{\rm d\'{e}pend}\;{\rm du}\;{\rm couple}\;{\rm souhait\'{e}}\;{\rm au}\;{\rm d\'{e}marrage}\;M'_{\rm d}\;{\rm et}\;{\rm du}\;{\rm type}\;{\rm du}\;{\rm couple}\;{\rm r\'{e}sistant}\;M_{\rm r}\;{\rm de}\;{\rm la}\;{\rm machine}\;{\rm entra\^{n}\'{e}e}$ ${\rm Valeurs}\;{\rm de}\;{\it Q}\;(\S\;11.1.9.6.).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                    | T            |                             |                                         |                     |                               |          |               |
| $I_{\rm h}$ sous 400 V = 59 A; $M_{\rm max}/M_{\rm h}$ = 3.  - Démarrage RR $\rightarrow$ $U'$ = $U$ = 400 V. $M'_{\rm d}/M_{\rm h} < M_{\rm max}/M_{\rm h}$ - $Q$ dépend du couple souhaité au démarrage $M'_{\rm d}$ et du type du couple résistant $M_{\rm r}$ de la machine entraînée Valeurs de $Q$ (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                    |              |                             |                                         | 60 = 233 A          | ١.                            |          |               |
| $I_{\rm h}$ sous 400 V = 59 A; $M_{\rm max}/M_{\rm h}$ = 3.  - Démarrage RR $\rightarrow$ $U'$ = $U$ = 400 V. $M'_{\rm d}/M_{\rm h} < M_{\rm max}/M_{\rm h}$ - $Q$ dépend du couple souhaité au démarrage $M'_{\rm d}$ et du type du couple résistant $M_{\rm r}$ de la machine entraînée Valeurs de $Q$ (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                    |              | 0.000                       |                                         |                     |                               |          |               |
| - Démarrage RR $\rightarrow U' = U = 400 \text{ V}$ . $M'_d/M_n < M_{\text{max}}/M_n$ - $Q$ dépend du couple souhaité au démarrage $M'_d$ et du type du couple résistant $M_r$ de la machine entraînée Valeurs de $Q$ (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | b) Moteur rotor bob                | iné → typ    | e FB 225 Mv/4               | (§ 11.1.12.4.)                          |                     |                               |          |               |
| $M_{\rm d}'/M_{\rm n} < M_{\rm max}/M_{\rm n}$ $- Q  {\rm dépend}  {\rm du}  {\rm couple}  {\rm souhait\acute{e}}  {\rm au}  {\rm démarrage}  M_{\rm d}'  {\rm et}  {\rm du}  {\rm type}  {\rm du}  {\rm couple}  {\rm r\acute{e}sistant}  M_{\rm r}  {\rm de}  {\rm la}  {\rm machine}  {\rm entra \hat{n}}  {\rm extra \hat{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                    | In s         | ous 400 V = 59              | A ; M <sub>max</sub> / M <sub>n</sub> = | = 3.                |                               |          |               |
| - $Q$ dépend du couple souhaité au démarrage $M'_d$ et du type du couple résistant $M_r$ de la machine entraînée Valeurs de $Q$ (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | <ul> <li>Démarrage RR →</li> </ul> | U' = U =     | 400 V.                      |                                         |                     |                               |          |               |
| Valeurs de Q (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                    | $M'_d/M_n$   | $< M_{\rm max} / M_{\rm n}$ |                                         |                     |                               |          |               |
| Valeurs de Q (§ 11.1.9.6.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                    |              |                             |                                         |                     |                               |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | - Q dépend du coup                 | le souhaite  | é au démarrage              | M'd et du type                          | du couple r         | résistant M <sub>r</sub> de l | a machin | e entraînée.  |
| → Q = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                    | 1.9.6.).     |                             |                                         |                     |                               |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Valeurs de Q (§ 11.                |              |                             |                                         |                     |                               |          |               |
| $I'_{d} = I_{D} (M'_{d}/M_{D} + Q) = 59 (1 + 1) = 118 \text{ A}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                    |              |                             |                                         |                     |                               |          |               |
| . a - 41 (m a m) 1 - 20 ( 1 + 1) - 1 - 2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | → Q = 1.                           | ) = 59 (1 -  | + 1) = 118 A                |                                         |                     |                               |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | → Q = 1.                           | ) = 59 (1 -  | + 1) = 118 A.               |                                         |                     |                               |          |               |

| 11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.  11.1.9.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŧ                                                                                                                                                                                                                                  | A B                                                         | B C D E F G H I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Le temps de démarrage dépend de $M_a$ (§ 11.1.6.4.), de $n$ fréquence de rotation finale (§ 11.1.8.6.) et de $J$ ou $MD^2$ (§ 11.1.2.1.). Lire le temps de démarrage $t_d$ sur l'absque (§ 11.1.6.5.) ou le calculer.   Exemple : Moteur : $LEROY$ SOMER LS 180 $L^4$ (§ 11.1.11.4.) $22$ kW $U = 400$ V. $t_n = 44.1$ A. $t_n = 1$ 455 min <sup>-1</sup> . $M_d$ $M_n = 2.4$ . $t_d$ $t_d = 5.5$ . $J$ rotor = 0.122 kg m². Machine entraînée : pompe centrituge démarrant en charge (du type $kn^2$ ).  Machine entraînée : pompe centrituge démarrant en charge (du type $kn^2$ ).  Machine entraînée : pompe centrituge démarrant en charge (du type $kn^2$ ).  Jà 1 455 min <sup>-1</sup> $0$ 122 + 2.3 = 2.422 kg.m². $M_n = 1.6$ km, pour $M_d$ / $M_n = 2.4$ ( $M_d = M_d$ et $M_n = 1$ 455 min <sup>-1</sup> (§ 11.1.5.4.). $M_n = 1.6$ km, pour $M_d$ / $M_n = 2.4$ ( $M_d = M_d$ et $M_n = M_d$ ).  Machine entraînée : (courbe $0$ ) § 11.1.6.4.). $M_n = 1.6$ km, pour $M_d$ / $M_n = 2.4$ ( $M_d = M_d$ et $M_n = M_d$ ).  Labaque (§ 11.1.6.5.) donne $t_d = 1.8$ s. $t_d = 5.5$ x 44.1 = 243 A.  Même moteur et même machine entraînée qu'au § 11.1.9.1. $(M_n = M_d)$ . Le couplea $0$ 0 (§ 11.1.8.7.) se fait à $n_t = 0.08$ $n_t$ 0 (fréquence de rotation finale en Y). $n_t = 1.275$ min <sup>-1</sup> . $J = 2.422$ kg.m². Le couple $M_t = 1.24$ kg. $M_t = 0.75$ x 140 = 105 km $M_t$ 3 $M_t = 0.4$ kg. $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$ x 105 = 31,5 km. (Le couple $M_t = 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                             | memotech_page 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Le temps de démarrage dépend de $M_a$ (§ 11.1.6.4.), de $n$ fréquence de rotation finale (§ 11.1.8.6.) et de $J$ ou $MD^2$ (§ 11.1.2.1.). Lire le temps de démarrage $t_0$ sur l'abaque (§ 11.1.6.5.) ou le calculer.  Exemple : Moteur : LEROY SOMER LS 180 L/4 (§ 11.1.11.4.) 22 kW $U = 400 \text{ V}$ . $l_n = 44.1 \text{ A}$ . $n_n = 14 \text{ 455 min}^{-1}$ . $M_0 / M_n = 2.4$ . $l_0 / l_n = 5.5$ . $J$ rotor = 0.122 kg m². Machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ). $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ). $M$ machine entraînée : (courbe $0$ ) § 11.1.6.4.) $M$ machine entraînée : (courbe $0$ ) § 11.1.6.4.) $M$ machine entraînée : (courbe $0$ ) § 11.1.6.4.) $M$ machine entraînée : (courbe $0$ ) § 11.1.6.4.) $M$ machine entraînée : (courbe $0$ ) § 11.1.6.4.) $M$ machine entraînée : (courbe $0$ ) § 11.1.6.5 donne $t_0 = 1.8 \text{ s}$ . $l_0 = 1.5 \text{ M}$ pour $M_0 / M_n = 2.4$ ( $M'_0 = M_0$ et $M'_1 = M_0$ ). La couplage $0$ 0 § 11.1.8.7) se fait à $n_1 = 0.85 n_0$ (fréquence de rotation finale en Y). $n_2 = 1.275 \text{ min}^{-1}$ . $J = 2.422 \text{ kg.m}^{-2}$ . Le couple $M$ re value of $M$ se $M$ se $M$ set $M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Le temps de démarrage dépend de $M_a$ (§ 11.1.6.4.), de $n$ fréquence de rotation finale (§ 11.1.8.6.) et de $J$ ou $MD^2$ (§ 11.1.2.1.). Lire le temps de démarrage $\ell_a$ sur l'abaque (§ 11.1.6.5.) ou le calculer. Exemple : Moteur : LEROY SOMER LS 180 L/4 (§ 11.1.11.4.) 22 kW $U=400$ V. $l_n=44.1$ A. $n_n=1458$ min <sup>-1</sup> . $M_d$ $M_n=2.4$ . $l_d$ $l_n=5.5$ . $J$ rotor = 0.122 kg m². Machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $M$ machine entraînée : pompe centrifuge (san $k$ ) $M$ machine entraînée : pompe centrifuge (san $k$ ) $M$ machine entraînée : pompe centrifuge (san $k$ ) $M$ machine entraînée : pompe centrifuge (san $k$ ) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe centrifuge est juste acceptable.) $M$ machine entraînée : pompe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Line le temps de démarrage $t_s$ sur l'abaque (§ 11.1.6.5) ou le calculer.  Exemple : Moteur : LEROY SOMER LS 180 L/4 (§ 11.1.11.4.) 22 kW $U=400 \text{ V.}$ $t_n=44.1 \text{ A.}$ $n_n=1 45 \text{ min}^{-1}$ $M_t/M_n=2.4$ . $t_d/t_n=5.5$ . $J$ rotor = 0,122 kg m². Machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ )  Machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ ) $P_0=P_n=22 \text{ kW.}$ $J=2.3 \text{ kg.m²}$ . (Ramené sur l'arbre du moteur)  Jà 1 455 min^{-1}=0,122+2,3=2.422 kg.m². $M_n=140 \text{ Nm å } 1455 \text{ min}^{-1}$ (§ 11.1.5.4.) $M_n=1.6 \text{ Nm } 1455 \text{ min}^{-1}$ (§ 11.1.5.4.) $M_n=1.6 \text{ Nm } 1455 \text{ min}^{-1}$ $M_n=M_n-M_n-1.6 \text{ Nm } 1.6 \text{ Nm } $ | 1                                                                                                                                                                                                                                  | 11.1.9. DÉ                                                  | TERMINATION DES DÉMARREURS (Calculs approchés)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11.1.9.1. DIMARRAGE DIRECT (D)  11.1.9.1. DIMARRAGE DIRECT (D)  12.1.1.0.1. DIMARRAGE DIRECT (D)  13.1.1.0.1. DIMARRAGE DIRECT (D)  14.1.1.0.1. DIMARRAGE DIRECT (D)  15.1.1.0.1. DIMARRAGE DIRECT (D)  16.1.1.0.1. DIMARRAGE DIRECT (D)  17.1.1.0.1. DIMARRAGE DIRECT (D)  18.1.1.0.1. DIMARRAGE DIRECT (D)  19.1.1.0.1. DIMARRAGE DIRECT (D)  19.1.1.0.1. DIMARRAGE DIRECT (D)  19.1.1.0.1. DIMARRAGE DIRECT (D)  10.1.1.0.1. DIMARRAGE DIRECT (D)  11.1.0.2. DIMARRAGE DIRECT (D)  10.1.0. DIMARRAGE DIMARRAGE DIMARRAGE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                             | $J$ ou $MD^2$ (§ 11.1.2.1.). Lire le temps de démarrage $t_{ m d}$ sur l'abaque (§ 11.1.6.5.) ou le calculer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DIRECT (D)  Jà 1 455 min <sup>-1</sup> = 0,122 + 2,3 = 2,422 kg.m². $M_n$ = 140 Nm à 1 455 min <sup>-1</sup> (§ 11.1.5.4.)  Machine entrainée : (courbe ③ § 11.1.6.4.). $M_a$ = 1,6 $M_n$ pour $M_d/M_n$ = 2,4 ( $M_d$ = $M_d$ et $M_n$ = $M_n$ )  (à 1 455 min <sup>-1</sup> $M_r$ = $M_m$ = $M_n$ ) $\rightarrow M_a$ = 1,6 $\times$ 140 = 224 Nm.  L'abaque (§ 11.1.6.5.) donne $t_g$ = 1,8 s. $t_g$ = 5,5 × 44.1 = 243 A.  Même moteur et même machine entrainée qu'au § 11.1.9.1. ( $M_n$ = $M_n$ )  Le coupleà $R_n$ vaut 0,75 $M_n$ = 0,75 × 140 = 105 Nm $M_d'/M_n'$ = $M_d'/M_n'$ = $M_d'/M_n'$ = 2,4/3 = 0.8 (§ 11.1.7.2.) $T_d'/M_n = M_d/M_n'$ = $M_d'/M_n'$ = 1,5/5 = 1,8 (§ 11.1.7.2.)  DEMARRAGE ÉTOILE- TRIANGLE  (Y-D)  Remarque :  La courbe $R_n$ = st dans ce cas le couple obtenu à $R_n$ )  Remarque :  La courbe $R_n$ = $R_n$ = $R_n$ = $R_n$ = 0,7 = 0,3 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,3 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,0 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,0 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,0 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,0 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,7 = 0,3 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,5 = 0,2 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,5 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,5 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,5 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,5 = 0,4 $R_n$ .  L'abaque (§ 11.1.6.5.) donne $R_n$ = 0,6 s. $R_n$ = valeur de la résistance en $\Omega$ . $R_n$ = valeur de la résistance en $\Omega$ . $R_n$ = valeur de la résistance en $\Omega$ . $R_n$ = valeur de la résistance en $\Omega$ . $R_n$ = valeur de la résistance en $\Omega$ . $R_n$ = valeur de la résistance en $\Omega$ . $R_n$ = 0,28 (400/44,1) $R_n$ = 0,38 . $R_n$ = 0,40 (40/44,1) $R_n$ = 0,50 A.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                             | $I_{\rm n}=44$ ,1 A. $n_{\rm n}=1~455~{\rm min^{-1}}$ . $M_{\rm d}/M_{\rm n}=2$ ,4. $I_{\rm d}/I_{\rm n}=5$ ,5. $J~{\rm rotor}=0$ ,122 kg m². Machine entraînée : pompe centrifuge démarrant en charge (du type $kn^2$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Machine entraînée : (courbe ③ § 11.1.6.4.). $M_a = 1,6$ $M_n$ pour $M_d/M_n = 2.4$ ( $M_d = M_d$ et $M_n = M_n$ ) (à 1.455 min <sup>-1</sup> $M_r = M_m = M_n$ ) $\rightarrow M_a = 1,6 \times 140 = 224$ Nm. L'abaque (§ 11.1.6.5.) donne $t_d = 1,8$ s. $t_d = 5,5 \times 44,1 = 243$ A.  Même moteur et même machine entraînée qu'au § 11.1.9.1. ( $M_n = M_n$ ) Le couplage ⑥ (§ 11.1.8.7.) se fait à $n_c = 0.85$ $n_a$ (fréquence de rotation finale en Y). $n_c = 1.275$ min <sup>-1</sup> . $J = 2,422$ kg.m². Le couple à $n_c$ vaut 0,75 $M_n = 0.75 \times 140 = 105$ Nm $M_d = M_n = M_d/3$ . $M_n = 2,4/3 = 0.8$ (§ 11.1.7.2.) $I_d = l_d/3$ . $I_n = 5,5/3 = 1,8$ (§ 11.1.7.2.) La courbe ③ (§ 11.1.6.4.) donne $M_a = 0.3$ $M_n$ (Le démarrage est juste acceptable.)  Remarque : La courbe caractéristique (§ 11.1.8.7.) indique un ordre de grandeur de $M_a$ . Au démarrage $M_a = M_m - M_n = 0.7 - 0.3 = 0.4$ $M_n$ . L'abaque (§ 11.1.6.5.) donne $t_f = 9,6$ s. $I_d = l_d/3 = 1.8$ $I_n = 1.8 \times 44,1 = 80$ A.  Le temps du couplage en Y se détermine de la même façon qu'au § 11.1.9.2. Le temps du couplage en P set généralement de 2 à 3 s.  Détermination de $R$ (cour phase) $R = 0.28 \frac{U}{h_n}$ Pe valeur de la résistance en $\Omega$ . $U = 1.1.9.2$ Le temps du couplage en Y se détermine de la même façon qu'au § 11.1.9.2.  Exemple: (Choix de $R$ § 11.1.9.7.)  Exemple: Cas précédent $t_f = 9,6$ s. $R = 0.28 (400/44,1)$ $R = 2.54$ $\Omega$ . $I_d = 1.8$ . $I_n = 80$ A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2                                                                                                                                                                                                                                |                                                             | Jà 1 455 min <sup>-1</sup> = 0,122 + 2,3 = 2,422 kg.m <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Même moteur et même machine entraînée qu'au § 11.1.9.1. ( $M_n = M_n$ ) Le couplage © § 11.1.8.7.) se fait à $n_c = 0.85 \ n_a$ (fréquence de rotation finale en Y). $n_c = 1.275 \ \text{min}^{-1}$ . $J = 2.422 \ \text{kg.m}^2$ . Le couple à $n_c$ vaut $0.75 \ M_n = 0.75 \times 140 = 105 \ \text{Nm}$ $M_a' M'_n = M_a J/3$ . $M_n = 2.4/3 = 0.8$ (§ 11.1.7.2.) $I'_d I'_n = I_d I/3$ . $I_n = 5.5/3 = 1.8$ (§ 11.1.7.2.) $I'_d I'_n = I_d I/3$ . $I_n = 5.5/3 = 1.8$ (§ 11.1.7.2.) La courbe ③ (§ 11.1.6.4.) donne $M_a = 0.3 \ M_n$ (Le démarrage est juste acceptable.) $M_a = 0.3 \times 105 = 31.5 \ \text{Nm}$ . (Le couple $M_n = 0.3 \times 105 = 31.5 \ \text{Nm}$ . (Le couple $M_n = 0.3 \times 105 = 31.5 \ \text{Nm}$ . (Le couple $M_n = 0.3 \times 105 = 31.5 \ \text{Nm}$ . (Le couple $M_n = 0.3 \times 105 = 31.5 \ \text{Nm}$ . (Le couple $M_n = 0.3 \times 105 = 31.5 \ \text{Nm}$ . (Le couple $M_n = 0.3 \times 105 = 31.5 \ \text{Nm}$ . (Le couple $M_n = 0.3 \times 105 = 31.5 \ \text{Nm}$ . (Le couple obtenu à $n_c$ )  Remarque :  La courbe caractéristique (§ 11.1.8.7.) indique un ordre de grandeur de $M_n$ .  Au démarrage $M_n = M_m - M_n = 0.7 - 0.3 = 0.4 \ M_n$ .  Labaque (§ 11.1.6.5.) donne $t_r = 9.6 \ \text{s}$ . $t'_d = t_d I/3 = 1.8 \ t_n = 1.8 \times 4.4 = 80 \ \text{A}$ .  Le temps du couplage en DR est généralement de 2 à 3 s. Détermination de $R$ : (par phase) $R = \text{valeur}$ de la résistance en $\Omega$ . $U = \text{tension entre phases en V}$ . $t'_n = 0.70 \ \text{M}$ . (Choix de $R$ § 11.1.9.7.)  Exemple :  Cas précédent $t_r = 9.6 \ \text{s}$ . $R = 0.28 \ (400/44.1)$ $R = 2.54 \ \Omega$ . $t'_n = 3 \ \text{s}$ . $t'_n = 3 \ \text{s}$ . $t'_n = 1.8$ . $t'_n = 80 \ \text{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                         |                                                             | (à 1 455 min <sup>-1</sup> $M_r \simeq M_m \simeq M'_n$ ) $\rightarrow M_a = 1.6 \times 140 = 224$ Nm.<br>L'abaque (§ 11.1.6.5.) donne $t_d \simeq 1.8$ s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L'abaque (§ 11.1.6.5.) donne $t_y = 9,6$ s. $I'_d = I_d/3 = 1.8 \ I_n = 1.8 \times 44.1 = 80 \ A.$ Le temps du couplage en Y se détermine de la même façon qu'au § 11.1.9.2.  Le temps du couplage en DR est généralement de 2 à 3 s.  Détermination de $R$ : (par phase) $R = \text{valeur de la résistance en } \Omega.$ $U = \text{tension entre phases en V.}$ $I_n = \text{courant nominal du moteur.}$ (Choix de $R$ § 11.1.9.7.) $Exemple:$ Cas précédent $t_y = 9,6$ s. $R = 0.28 \ (400/44.1)$ $R = 2.54 \ \Omega.$ $I_d = 1.8.$ $I_d = 1.8.$ $I_n = 80 \ A.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>0<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9<br>9<br>0<br>1<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | DÉMARRAGE<br>ÉTOILE-<br>TRIANGLE                            | Le couplage © (§ 11.1.8.7.) se fait à $n_{\rm c}=0.85~n_{\rm s}$ (fréquence de rotation finale en Y). $n_{\rm c}=1.275~{\rm min^{-1}}.~~J=2,422~{\rm kg.m^2}.$ Le couple à $n_{\rm c}$ vaut $0.75~M_{\rm n}=0.75\times140=105~{\rm Nm}$ $M'_{\rm d}/M'_{\rm n}=M_{\rm d}/3.~~M_{\rm n}=2,4/3=0.8~(§ 11.1.7.2.)$ $l'_{\rm d}/l_{\rm n}=l_{\rm d}/3.~~l_{\rm n}=5,5/3=1,8~(§ 11.1.7.2.)$ La courbe ③ (§ 11.1.6.4.) donne $M_{\rm a}=0.3~M_{\rm n}$ (Le démarrage est juste acceptable.) $M_{\rm a}=0.3\times105=31,5~{\rm Nm}.$ (Le couple $M_{\rm n}$ est dans ce cas le couple obtenu à $n_{\rm c}$ ) Remarque : La courbe caractéristique (§ 11.1.8.7.) indique un ordre de grandeur de $M_{\rm a}$ . |
| Le temps du couplage en DR est généralement de 2 à 3 s. Détermination de $R$ : (par phase) $R = 0.28 \frac{U}{l_n}$ $R = 0.28 \frac{U}{l_n$                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    | DÉMARRAGE<br>ÉTOILE-<br>TRIANGLE<br>RÉSISTANCE-<br>TRIANGLE | Le temps du couplage en DR est généralement de 2 à 3 s. Détermination de $R$ : (par phase) $R = \text{valeur de la résistance en } \Omega.$ $U = \text{tension entre phases en V.}$ $I_n = \text{courant nominal du moteur.}$ (Choix de $R$ § 11.1.9.7.) $Exemple:$ Cas précédent $t_y = 9.6$ s. $R = 0.28 \text{ (400/44,1)}$ $R = 2.54 \Omega.$ $t_{dr} = 3 \text{ s.}$ $I_n = 80 \text{ A.}$                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                  |                                                             | 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|    | Α | В                                                                                 | С         | D        | Е                | F     | G              | Н       | I                | J    | K     | L    | М    | N    | 0                | Р          | Q    | R |
|----|---|-----------------------------------------------------------------------------------|-----------|----------|------------------|-------|----------------|---------|------------------|------|-------|------|------|------|------------------|------------|------|---|
| 1  |   | CARACTERISTIQUES DES MOTEURS TRIPHASÉS ROTOR À CAGE (MOTEURS 4 PÔLES) SERVICES S1 |           |          |                  |       |                |         |                  |      |       |      |      |      |                  |            |      |   |
| 2  |   | Puissan                                                                           | Puissance |          | Intensité<br>(A) |       | Couple<br>(Nm) |         | Rendement<br>(%) |      | Cos φ |      |      | n    | Inertie du rotor | Masse      |      |   |
| 3  |   | kW                                                                                | Ch        | Туре     | In sous<br>400 V | Id/In | Md/Mn          | Mmax/Mn | 1/2              | 3/4  | 4/4   | 1/2  | 3/4  | 4/4  | min-1            | J<br>kg.m² | kg   |   |
| 4  |   | 0,09                                                                              | 0,12      | LS 56 L  | 0,38             | 2,89  | 1,8            | 1,85    | 41               | 48   | 54    | 0,48 | 0,58 | 0,67 | 1 375            | 0,00002    | 4    |   |
| 5  |   | 0,12                                                                              | 0,17      | LS 63 M  | 0,43             | 2,79  | 2              | 2       | 52               | 56   | 55    | 0,52 | 0,67 | 0,8  | 1 350            | 0,00035    | 4,8  |   |
| 6  |   | 0,18                                                                              | 0,25      | LS 63 M  | 0,6              | 3,5   | 2,1            | 2,1     | 56               | 60   | 63    | 0,57 | 0,68 | 0,78 | 1 390            | 0,000475   | 5    |   |
| 7  |   | 0,25                                                                              | 0,33      | LS 71 L  | 0,82             | 3,9   | 1,8            | 2,4     | 50               | 57   | 61    | ,    | ,    | -    |                  | 0,000675   | 6,4  |   |
| 8  |   | 0,37                                                                              | 0,5       | LS 71 L  | 1,1              | 4,36  | 1,85           | 2,5     | 58               | 64   | 67    | 0,51 | 0,66 | 0,76 | 1 400            | 0,00085    | 7,3  |   |
| 9  |   | 0,55                                                                              | 0,75      | LS 80 L  | 1,65             | 4,61  | 2,1            | 2,2     | 60               | 66   | 68    | 0,5  | 0,64 | 0,75 | 1 400            | 0,001375   | 9    |   |
| 10 |   | 0,75                                                                              | 1         | LS 80 L  | 2,1              | 4,76  | 2,4            | 2,4     | 66               | 71   | 72    | 0,57 | 0,7  | 0,75 | 1 400            | 0,0018     | 10,5 |   |
| 11 |   | 0,9                                                                               | 1,25      | LS 80 L  | 2,6              | 5,38  | 2,9            | 2,7     | 67               | 73   | 73    | 0,48 | 0,61 | 0,76 | 1 415            | 0,00235    | 11,5 |   |
| 12 |   | 1,1                                                                               | 1,5       | LS 90 S  | 2,7              | 5,67  | 2,2            | 2,4     | 74               | 76   | 77    | 0,6  | 0,74 | 0,82 | 1 420            | 0,003175   | 14   | ĺ |
| 13 |   | 1,5                                                                               | 2         | LS 90 L  | 3,7              | 5,92  | 2,3            | 2,6     | 75               | 78   | 78    | 0,57 | 0,72 | 0,8  | 1 420            | 0,003925   | 15   | ĺ |
| 14 |   | 1,8                                                                               | 2,5       | LS 90 L  | 4,3              | 5,65  | 2,1            | 2,3     | 78               | 80   | 79    | 0,62 | 0,75 | 0,82 | 1 410            | 0,0046     | 17   |   |
| 15 |   | 2,2                                                                               | 3         | LS 100 L | 5,25             | 6,3   | 2,5            | 2,6     | 78               | 80,5 | 81    | 0,58 | 0,7  | 0,79 | 1 435            | 0,00595    | 21   | ĺ |
| 16 |   | 3                                                                                 | 4         | LS 100 L | 7,1              | 6,35  | 2,8            | 2,8     | 78               | 81   | 81    | 0,6  | 0,72 | 0,79 | 1 435            | 0,00745    | 23   | ĺ |
| 17 |   | 4                                                                                 | 5,5       | LS 112 M | 9,5              | 5,7   | 2,3            | 2,4     | 79               | 81   | 82    | 0,56 | 0,7  | 0,78 | 1 440            | 0,01345    | 28   |   |
| 18 |   | 5,5                                                                               | 7,5       | LS 132 S | 11,8             | 7,25  | 2,4            | 2,5     | 79               | 82   | 83    | 0,57 | 0,73 | 0,85 | 1 435            | 0,021125   | 45   |   |
| 19 |   | 7,5                                                                               | 10        | LS 132 M | 16               | 7,9   | 3,2            | 3,1     | 81               | 84   | 85    | 0,66 | 0,77 | 0,83 | 1 450            | 0,03345    | 56   |   |
| 20 |   | 9                                                                                 | 12        | LS 132 M | 18,6             | 8,2   | 2,6            | 2,9     | 83               | 85   | 85    | 0,72 | 0,82 | 0,86 | 1 445            | 0,038525   | 62   |   |
| 21 |   | 11                                                                                | 15        | LS 160 M | 22               | 5     | 2,1            | 2,1     | 86               | 87,5 | 87    | 0,8  | 0,85 | 0,87 | 1 440            | 0,05375    | 80   |   |
| 22 |   | 15                                                                                | 20        | LS 160 L | 29,3             | 5,8   | 2,4            | 2,5     | 88               | 89   | 89    | 0,76 | 0,83 | 0,86 | 1 445            | 0,073      | 97   |   |
| 23 |   | 18                                                                                | 25        | LS 180 M | 36,4             | 5,8   | 2,5            | 2,4     | 88               | 89   | 88,5  | 0,77 | 0,84 | 0,87 | 1 450            | 0,0885     | 113  |   |
| 24 |   | 22                                                                                | 30        | LS 180 L | 44,1             | 5,5   | 2,4            | 2,5     | 88               | 89   | 89    | 0,73 | 0,81 | 0,85 | 1 455            | 0,122      | 135  |   |
| 25 |   | 30                                                                                | 40        | LS 200 L | 60               | 6,3   | 2,5            | 2,4     | 87,5             | 89,5 | 89,5  | 0,74 | 0,81 | 0,85 | 1 455            | 0,15125    | 170  |   |
| 26 |   | 37                                                                                | 50        | LS 225 S | 72               | 6,4   | 2,7            | 2,5     | 88,5             | 90,5 | 90,5  | 0,74 | 0,83 | 0,86 | 1 460            | 0,25675    | 210  |   |
| 27 |   | 45                                                                                | 60        | LS 225 M | 85,5             | 6     | 2,7            | 2,7     | 89,5             | 91   | 91    | 0,75 | 0,83 | 0,86 | 1 460            | 0,6065     | 275  |   |
| 28 |   | 55                                                                                | 75        | LS 250 M | 106              | 6,6   | 2,7            | 2,7     | 89               | 91,5 | 92    | 0,77 | 0,83 | 0,86 | 1 470            | 1,1075     | 315  |   |
| 29 |   | 75                                                                                | 100       | LS 280 S | 145              | 7     | 3,1            | 2,9     | 90               | 91,5 | 92    | 0,78 | 0,82 | 0,85 | 1 470            | 1,5775     | 400  |   |
| 30 |   | 90                                                                                | 125       | LS 280 M | 173              | 7     | 3,1            | 2,7     | 90,5             | 92   | 92,5  | 0,77 | 0,83 | 0,85 | 1 475            | 2,15725    | 565  |   |
| 31 |   | 110                                                                               | 150       | LS 315 S | 211              | 7,4   | 3,4            | 2,6     | 90,5             | 92   | 93    | 0,75 | 0,81 | 0,85 | 1 475            | 2,6515     | 685  |   |
| 32 |   | 132                                                                               | 180       | LS 315 M | 253              | 7,1   | 3,3            | 2,6     | 91,5             | 93   | 94    | 0,75 | 0,81 | 0,84 | 1 480            | 2,967      | 750  |   |
| 33 |   | 160                                                                               | 220       | LS 315 L | 300              | 7,2   | 1,7            | 2,7     | 93               | 94   | 94    | 0,8  | 0,84 | -    |                  | 3,8        | 1050 |   |
| 34 |   | 200                                                                               | 270       | LS 315 L | 370              | 7,2   | 1,7            | 2,7     | 93,5             | 94,5 | 95    | 0,8  | 0,84 | 0,86 |                  | 4,4        | 1150 |   |
| 35 | · |                                                                                   |           |          |                  |       |                |         |                  |      |       |      |      |      |                  | · · ·      |      | _ |