

Le groupe symétrique

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 **IT

Soit σ l'élément de S_{12} : $\sigma = (3\ 10\ 7\ 1\ 2\ 6\ 4\ 5\ 12\ 8\ 9\ 11)$.

- 1. Combien σ possède-t-elle d'inversions? Que vaut sa signature?
- 2. Décomposer σ en produit de transpositions. Retrouvez sa signature.
- 3. Déterminer les orbites de σ .
- 4. Déterminer σ^{2005} .

Correction ▼ [005353]

Exercice 2 ***IT

Démontrer que S_n est engendré par $\tau_{1,2}, \tau_{1,3},...,\tau_{1,n}$.

Correction ▼ [005354]

Exercice 3 ***IT

Démontrer que A_n est engendré par les cycles de longueur 3 (pour $n \ge 3$).

Correction ▼ [005355]

Exercice 4 ***I

Démontrer que S_n est engendré par $\tau_{1,2}$ et le cycle $(2\ 3\ ...\ n\ 1)$.

Correction ▼ [005356]

Exercice 5 ***I

Soit (G, \times) un groupe. Montrer que (G, \times) est isomorphe à un sous-groupe de $(S(G), \circ)$ et que, en particulier, tout groupe fini d'ordre n est isomorphe à un sous-groupe de S_n (théorème de CAYLEY). (Indication : montrer que pour chaque x de G, l'application $y \mapsto xy$ est une permutation de G.)

Correction ▼ [005357]

Exercice 6 ***

Soit σ une permutation de $\{1,...,n\}$ et k le nombre d'orbites de σ . Montrer que $\varepsilon(\sigma) = (-1)^{n-k}$.

Correction ▼ [005358]

Exercice 7 ***I

 σ étant une permutation de $\{1,...,n\}$ donnée, on définit la matrice notée P_{σ} , carrée d'ordre n dont le terme ligne i colonne j est $\delta_{i,\sigma(j)}$ (où $\delta_{i,j}$ est le symbôle de KRONECKER. On note G l'ensemble des P_{σ} où σ décrit S_n .

- 1. (a) σ et σ' étant deux éléments de S_n , calculer $P_{\sigma} \times P_{\sigma'}$.
 - (b) En déduire que (G, \times) est un sous-groupe de $(GL_n(\mathbb{R}), \times)$, isomorphe à (S_n, \circ) (les matrices P_{σ} sont appelées « matrices de permutation »).
- 2. (Une utilisation des P_{σ}) A étant une matrice carrée donnée, calculer AP_{σ} et $P_{\sigma}A$. Que constate-t-on?

Correction ▼ [005359]

Exercice 8 ***I

 $\overline{A_1, A_2, ..., A_p}$ sont p matrices carrées d'ordre n, deux à deux distinctes et inversibles. On suppose que $\{A_1, ..., A_p\}$ est stable pour \times . Montrer que $\{A_1, ..., A_p\}$ est un sous groupe de $(GL_n(\mathbb{R}), \times)$.

Correction ▼ [005360]

Exercice 9 ***

Dans $E = \mathbb{R}^n$, on considère l'hyperplan H d'équation $x_1 + ... + x_n = 0$ dans la base canonique $(e_i)_{1 \le i \le n}$ de E. Pour $\sigma \in S_n$ donnée, on considère l'endomorphisme f_{σ} de E défini par : $\forall i \in E$, $f_{\sigma}(e_i) = e_{\sigma(i)}$.

On pose alors $p = \frac{1}{n!} \sum_{\sigma \in S_n} f_{\sigma}$. Montrer que p est une projection dont on déterminera l'image et la direction.

Correction ▼ [005361]

1. Les inversions de σ sont : $\sigma = (3\ 10\ 7\ 1\ 2\ 6\ 4\ 5\ 12\ 8\ 9\ 11)$.

$$\{1,4\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{2,7\}, \{2,8\}, \{2,10\}, \{2,11\}, \{3,4\}, \{3,5\}, \{3,6\}, \{3,7\}, \{3,8\}, \{6,7\}, \{6,8\}, \{9,10\}, \{9,11\}, \{9,12\}.$$

Au total, il y a 2+8+5+2+3=20 inversions. σ est donc une permutation paire (de signature 1).

2. $\tau_{11.12} \circ \sigma = (3\ 10\ 7\ 1\ 2\ 6\ 4\ 5\ 11\ 8\ 9\ 12).$

Puis,
$$\tau_{9.11} \circ \tau_{11.12} \circ \sigma = (3\ 10\ 7\ 1\ 2\ 6\ 4\ 5\ 9\ 8\ 11\ 12)$$
.

Puis,
$$\tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3 \ 8 \ 7 \ 1 \ 2 \ 6 \ 4 \ 5 \ 9 \ 10 \ 11 \ 12).$$

Puis,
$$\tau_{8,5} \circ \tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3\ 5\ 7\ 1\ 2\ 6\ 4\ 8\ 9\ 10\ 11\ 12).$$

Puis,
$$\tau_{7,4} \circ \tau_{8,5} \circ \tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3\ 5\ 4\ 1\ 2\ 6\ 7\ 8\ 9\ 10\ 11\ 12).$$

Puis,
$$\tau_{5,2} \circ \tau_{7,4} \circ \tau_{8,5} \circ \tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3\ 2\ 4\ 1\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12).$$

Puis,
$$\tau_{1,4} \circ \tau_{5,2} \circ \tau_{7,4} \circ \tau_{8,5} \circ \tau_{10,8} \circ \tau_{9,11} \circ \tau_{11,12} \circ \sigma = (3\ 2\ 1\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12) = \tau_{1,3}$$
.

Par suite,

$$\sigma = \tau_{11,12} \circ \tau_{9,11} \circ \tau_{10,8} \circ \tau_{8,5} \circ \tau_{7,4} \circ \tau_{5,2} \circ \tau_{1,4} \circ \tau_{1,3}.$$

- 3. $O(1) = \{1, 3, 4, 7\} = O(3) = O(4) = O(7)$, puis $O(2) = \{2, 5, 8, 10\}$ puis $O(6) = \{6\}$ et $O(9) = \{9, 11, 12\} = O(11) = O(12)$. σ a 4 orbites, deux de cardinal 4, une de cardinal 3 et un singleton (correspondant à un point fixe).
- 4. σ est donc le produit commutatif des cycles $c_1 = \begin{pmatrix} 1 & 3 & 4 & 7 \\ 3 & 7 & 7 & 4 \end{pmatrix}$, $c_2 = \begin{pmatrix} 2 & 5 & 8 & 10 \\ 10 & 2 & 5 & 8 \end{pmatrix}$ et

$$c_3 = \left(\begin{array}{ccc} 9 & 11 & 12 \\ 12 & 9 & 11 \end{array}\right).$$

On a $c_1^4 = c_2^4 = Id$ et $c_3^3 = Id$. Or, 2005 = 4.1001 + 1. Donc, $c_1^{2005} = c_1(c_1^4)^{1001} = c_1$, et de même $c_2^{2005} = c_2$. Puis, $c_3^{2005} = (c_3^3)^{668}c_3 = c_3$. Puisque c_1 , c_2 et c_3 commutent,

$$\sigma^{2005} = c_1^{2005} c_2^{2005} c_3^{2005} = c_1 c_2 c_3 = \sigma = (3\ 10\ 7\ 1\ 2\ 6\ 4\ 5\ 12\ 8\ 9\ 11).$$

Correction de l'exercice 2 A

 (S_n, \circ) est engendré par les transpositions. Il suffit donc de montrer que pour $2 \leqslant i < j \leqslant n$, la transposition $\tau_{i,j}$ est produit des $\tau_{1,k}$, $2 \leqslant k \leqslant n$.

Mais $\tau_{1,i} \circ \tau_{1,j} \circ \tau_{1,i} = (i1j)(ji1)(i1j) = (1ij) = \tau_{i,j}$ ce qu'il fallait démontrer.

Correction de l'exercice 3 A

Les éléments de A_n sont les produits pairs de transpositions. Il suffit donc de vérifier qu'un produit de deux transpositions est un produit de cycles de longueur 3.

Soient i, j et k trois éléments deux à deux distincts de $\{1,...,n\}$. $\tau_{i,k} \circ \tau_{i,j}$ est le 3-cycle : $i \to j$ $j \to k$ $k \to i$, ce qui montre qu'un 3-cycle est pair et que le produit de deux transpositions dont les supports ont en commun un singleton est un 3-cycle.

Le cas $\tau_{i,j} \circ \tau_{i,j} = Id = (231)(312)$ est immédiat. Il reste à étudier le produit de deux transpositions à supports disjoints.

Soient i, j, k et l quatre éléments de deux à deux distincts de $\{1,...,n\}$.

$$\tau_{i,j} \circ \tau_{k,l} = (jikl)(ijlk) = (jilk) = (jkil)(ljik).$$

Donc, $\tau_{i,j} \circ \tau_{k,l}$ est un bien un produit de 3-cycles ce qui achève la démonstration.

Correction de l'exercice 4 A

D'après l'exercice 2, il suffit de montrer que pour $2 \le i \le n$, $\tau_{1,i}$ peut s'écrire en utilisant uniquement $\tau = \tau_{1,2}$ et $c = (2 \ 3 \ ... \ n \ 1)$. On note que $c^n = Id$.

Tout d'abord, pour $1 \le i \le n-1$, étudions $\sigma = c^{i-1} \circ \tau \circ c^{n-i+1}$.

Soit $k \in \{1, ..., n\}$.

$$\tau \circ c^{n-i+1}(k) \neq c^{n-i+1}(k) \leqslant c^{n-i+1}(k) \leqslant c^{n-i+1}(k) \in \{1,2\} \Leftrightarrow k \in \{c^{-n+i-1}(1), c^{-n+i-1}(2)\} \Leftrightarrow k \in \{c^{i-1}(1), c^{i-1}(2)\} \Leftrightarrow k \in \{i, i+1\}.$$

Donc, si $k \notin \{i, i+1\}$,

$$\sigma(k) = c^{i-1}(k)(\tau \circ c^{n-i+1}(k)) = c^{i-1}(c^{n-i+1}(k)) = c^{n}(k) = k,$$

et la restriction de σ à $\{1,...,n\} \setminus \{i,i+1\}$ est l'identité de cet ensemble. Comme σ n'est pas l'identité puisque $\sigma(i) \neq i$, σ est donc nécessairement la transposition $\tau_{i,i+1}$.

On a montré que $\forall i \in \{1, ..., n-1\}, \ c^{i-1} \circ \tau \circ c^{n-i+1} = \tau_{i,i+1}.$

Vérifions maintenant que les $\tau_{1,i}$ s'écrivent à l'aide des $\tau_{j,j+1}$. D'après l'exercice 2, $\tau_{i,j} = \tau_{1,i} \circ \tau_{1,j} \circ \tau_{1,i}$, et donc bien sûr, plus généralement, $\tau_{i,j} = \tau_{k,i} \circ \tau_{k,j} \circ \tau_{k,i}$.

Par suite, $\tau_{1,i} = \tau_{1,2} \circ \tau_{2,i} \circ \tau_{1,2}$ puis, $\tau_{2,i} = \tau_{2,3} \circ \tau_{3,i} \circ \tau_{2,3}$, puis, $\tau_{3,i} = \tau_{3,4} \circ \tau_{4,i} \circ \tau_{3,4}$... et $\tau_{i-2,i} = \tau_{i-2,i-1} \circ \tau_{i-1,i} \circ \tau_{i-2,i-1}$. Finalement,

$$\tau_{1,i} = \tau_{1,2} \circ \tau_{2,3} \circ ... \circ \tau_{i-2,i-1} \tau_{i-1,i} \circ \tau_{i-2,i-1} \circ ... \circ \tau_{2,3} \circ \tau_{1,2},$$

ce qui achève la démonstration.

Correction de l'exercice 5 A

Soit (G, \times) un groupe. Pour x élément de G, on considère $f_x: G \to G$. f_x est une application de G vers $y \mapsto xy$

G et de plus, clairement $f_x \circ f_{x^{-1}} = f_{x^{-1}} \circ f_x = Id_G$. Donc, pour tout élément x de G, f_x est une permutation de G.

Soit alors $\varphi:(G,\times)\to (S_G,\circ)$. D'après ce qui précède, φ est une application. De plus, φ est de plus $x\mapsto f_x$

un morphisme de groupes. En effet, pour $(x, x', y) \in G^3$, on a :

$$\varphi((xx'))(y) = f_{xx'}(y) = xx'y = f_x(f'_x(y)) = f_x \circ f_{x'}(y) = (\varphi(x) \circ \varphi(x'))(y),$$

et donc $\forall (x, x') \in G^2$, $\varphi(xx') = \varphi(x)o\varphi(x')$.

Enfin, φ est injectif car, pour x élément de G:

$$\varphi(x) = Id \Rightarrow \forall y \in G, xy = y \Rightarrow xe = e \Rightarrow x = e.$$

Donc, $Ker \varphi = \{e\}$, et φ est injectif.

 φ est ainsi un isomorphisme de groupes de (G, \times) sur $(f(G), \circ)$ qui est un sous groupe de (S_G, \circ) . (G, \times) est bien isomorphe à un sous groupe de (S_G, \circ) .

Correction de l'exercice 6 ▲

Montrons d'abord par récurrence sur $l \ge 2$ que la signature d'un cycle de longueur l est $(-1)^{l-1}$.

C'est connu pour l = 2 (signature d'une transposition).

Soit $l \ge 2$. Supposons que tout cycle de longueur l ait pour signature $(-1)^{l-1}$. Soit c un cycle de longueur l+1.

On note $\{x_1, x_2, ..., x_{l+1}\}$ le support de c et on suppose que, pour $1 \le i \le l$, $c(x_i) = x_{i+1}$ et que $c(x_{l+1}) = x_1$.

Montrons alors que $\tau_{x_1,x_{l+1}} \circ c$ est un cycle de longueur l. $\tau_{x_1,x_{l+1}} \circ c$ fixe déjà x_{l+1} puis, si $1 \leqslant i \leqslant l-1$, $\tau_{x_1,x_{l+1}} \circ c$ $c(x_i) = \tau_{x_1,x_{l+1}}(x_{i+1}) = x_{i+1}$ (car x_{i+1} n'est ni x_1 , ni x_{l+1}), et enfin $\tau_{x_1,x_{l+1}} \circ c(x_l) = \tau_{x_1,x_{l+1}}(x_{l+1}) = x_1$. $\tau_{x_1,x_{l+1}} \circ c$ est donc bien un cycle de longueur l. Par hypothèse de récurrence, $\tau_{x_1,x_{l+1}} \circ c$ a pour signature $(-1)^{l-1}$ et donc, c a pour signature $(-1)^{(l+1)-1}$.

Montrons maintenant que si σ est une permutation quelconque de $\{1,...,n\}$ ayant k orbites la signature de σ est $(-1)^{n-k}$.

Si σ est l'identité, σ a n orbites et le résultat est clair.

Si σ n'est pas l'identité, on décompose σ en produit de cycles à supports disjoints.

Posons $\sigma = c_1...c_p$ où p désigne le nombre d'orbites de σ non réduites à un singleton et donc k-p est le nombre de points fixes de σ . Si l_i est la longueur de c_i , on a donc $n=l_1+...+l_p+(k-p)$ ou encore $n-k=l_1+...+l_p-p$.

Mais alors,

$$\varepsilon(\sigma) = \prod_{i=1}^{p} \varepsilon(c_i) = \prod_{i=1}^{p} (-1)^{l_i - 1} = (-1)^{l_1 + \dots + l_p - p} = (-1)^{n - k}.$$

Correction de l'exercice 7 A

1. (a) Soient σ et σ' deux éléments de S_n . Soit $(i,j) \in \{1,...,n\}^2$. Le coefficient ligne i, colonne j de $P_{\sigma}P_{\sigma'}$ vaut

$$\sum_{k=1}^{n} \delta_{i,\sigma(k)} \delta_{k,\sigma'(j)} = \delta_{i,\sigma(\sigma'(j))},$$

et est donc aussi le coefficient ligne i, colonne j de la matrice $P_{\sigma \circ \sigma'}$. Par suite,

$$\forall (\sigma, \sigma') \in (S_n)^2, P_{\sigma} \times P_{\sigma'} = P_{\sigma \circ \sigma'}.$$

(b) Soit $\sigma \in S_n$. D'après a), $P_{\sigma}P_{\sigma^{-1}} = P_{\sigma \circ \sigma^{-1}} = P_{Id} = I_n = P_{\sigma^{-1}}P_{\sigma}$. On en déduit que toute matrice P_{σ} est inversible, d'inverse $P_{\sigma^{-1}}$. Par suite, $G \subset GL_n(\mathbb{R})$ (et clairement, $G \neq \emptyset$). Soit alors $(\sigma, \sigma') \in (S_n)^2$.

$$P_{\sigma}P_{\sigma'}^{-1}=P_{\sigma}P_{\sigma'^{-1}}=P_{\sigma\circ\sigma'^{-1}}\in G.$$

On a montré que G est un sous-groupe de $(GL_n(\mathbb{R}), \times)$.

Soit $\varphi:S_n\to G$. D'après a), φ est un morphisme de groupes. φ est clairement surjectif. Il $\sigma\mapsto P_\sigma$

reste à vérifier que φ est injectif.

Soit $\sigma \in S_n$.

$$\sigma \in \operatorname{Ker} \varphi \Rightarrow P_{\sigma} = I_{n} \Rightarrow \forall (i, j) \in \{1, ..., n\}^{2}, \ \delta_{i, \sigma(j)} = \delta_{i, j}$$
$$\Rightarrow \forall i \in \{1, ..., n\}, \ \delta_{i, \sigma(i)} = 1 \Rightarrow \forall i \in \{1, ..., n\}, \ \sigma(i) = i$$
$$\Rightarrow \sigma = Id.$$

Puisque le noyau du morphisme φ est réduit à $\{Id\}$, φ est injectif.

Ainsi, φ est un isomorphisme du groupe (S_n, \circ) sur le groupe (G, \times) et on a montré que (G, \times) est un sous-groupe de $(GL_n(\mathbb{R}), \times)$, isomorphe à (S_n, \circ) .

2. Soit $(i, j) \in \{1, ..., n\}^2$. Le coefficient ligne i, colonne j de AP_{σ} vaut :

$$\sum_{k=1}^n a_{i,k} \delta_{k,\sigma(j)} = a_{i,\sigma(j)}.$$

Ainsi, l'élément ligne i, colonne j, de AP_{σ} est l'élément ligne i, colonne $\sigma(j)$, de A, ou encore, si j est un élément donné de $\{1,...,n\}$, la j-ème colonne de AP_{σ} est la $\sigma(j)$ -ème colonne de A. Ainsi, si on note $C_1,...,C_n$ les colonnes de A (et donc $A=(C_1,...,C_n)$), alors $AP_{\sigma}=(C_{\sigma(1)},...,C_{\sigma(n)})$. En clair, multiplier A par P_{σ} à droite a pour effet d'appliquer la permutation σ aux colonnes de A (puisque P_{σ} est inversible, on retrouve le fait que permuter les colonnes de A ne modifie pas le rang de A).

De même, le coefficient ligne i, colonne j, de $P_{\sigma}A$ vaut

$$\sum_{k=1}^{n} \delta_{i,\sigma(k)} a_{k,j} = \sum_{k=1}^{n} \delta_{\sigma^{-1}(i),k} a_{k,j} = a_{\sigma^{-1}(i),j},$$

(on a utilisé $\sigma(k) = i \Leftrightarrow k = \sigma^{-1}(i)$) et multiplier A par P_{σ} à gauche a pour effet d'appliquer la permutation σ^{-1} aux lignes de A.

Correction de l'exercice 8 A

 $G = \{A_1, ..., A_p\}$ est déjà une partie non vide de $GL_n(\mathbb{R})$, stable pour \times . Il reste à vérifier que G est stable pour le passage à l'inverse.

Soient $i \in \{1,...,n\}$, puis $\varphi_i: G \to G$. Puisque G est stable pour le produit, φ_i est une application de $A \mapsto A_i A$

G dans G.

Montrons que φ_i est injective. Soit $(A,B) \in G$.

$$\varphi(A) = \varphi_i(B) \Rightarrow A_i A = A_i B \Rightarrow A_i^{-1} A_i A = A_i^{-1} A_i B \Rightarrow A = B.$$

Donc, φ_i est une application injective de l'ensemble **fini** G dans lui-même. On sait alors que φ_i est une permutation de G.

Par φ_i , A_i a un antécédent A dans G. $A_iA = A_i$ fournit $A_i^{-1}A_iA = A_i^{-1}A_i$ puis $A = I \in G$. Ainsi, G contient la matrice I. Ensuite, I a un antécédent par φ_i dans G. Donc, il existe $B \in G$ telle que $A_iB = I$. Mais alors $A_i^{-1} = B \in G$.

G est bien stable pour le passage à l'inverse et est donc un sous-groupe de $(GL_n(\mathbb{R}), \times)$.

Correction de l'exercice 9

Pour $(x_1,...,x_n) \in E$, on pose $\varphi((x_1,...,x_n)) = x_1 + ... + x_n$. φ est une forme linéaire non nulle sur E et H est le noyau de φ . H est donc bien un hyperplan de E.

Il est clair que, pour $(\sigma, \sigma') \in S_n^2$, $f_{\sigma} \circ f_{\sigma'} = f_{\sigma \circ \sigma'}$. $(\mathcal{L}(E), +, .)$ est un espace vectoriel et donc, p est bien un endomorphisme de E.

$$p^2 = rac{1}{n!^2} \left(\sum_{\sigma \in S_n} f_\sigma
ight)^2 = \sum_{(\sigma,\sigma') \in (S_n)^2} f_\sigma \circ f_{\sigma'}.$$

Mais, (S_n, \circ) est un groupe fini. Par suite, l'application $S_n \to S_n$, injective (même démarche que dans $\sigma \mapsto \sigma \circ \sigma'$

l'exercice 8), est une permutation de S_n . On en déduit que, pour σ' donnée, $\sum_{\sigma \in S_n} f_{\sigma \circ \sigma'} = \sum_{\sigma \in S_n} f_{\sigma}$. Ainsi, en posant q = n!p.

$$p^{2} = \frac{1}{n!^{2}} \sum_{\sigma' \in S_{n}} \left(\sum_{\sigma \in S_{n}} f_{\sigma \circ \sigma'} \right) = \frac{1}{n!^{2}} \sum_{\sigma' \in S_{n}} q = \frac{1}{n!^{2}} . n! q = \frac{1}{n!} q = p.$$

p est donc une projection. Déterminons alors l'image et le noyau de p. Soit $i \in \{1,...,n\}$.

$$p(e_i) = \frac{1}{n!} \sum_{\sigma \in S_n} f_{\sigma}(e_i) = \frac{1}{n!} \sum_{\sigma \in S_n} e_{\sigma(i)}.$$

Maintenant, il y a (bien sûr) autant de permuations σ telles que $\sigma(i) = 1$, que de permutations σ telles que $\sigma(i) = 2,...$ ou de permutations σ telles que $\sigma(i) = n$, à savoir $\frac{n!}{n} = (n-1)!$. Donc,

$$\forall i \in \{1,...,n\}, \ p(e_i) = \frac{1}{n!} \frac{n!}{n} \sum_{k=1}^n e_k = \frac{1}{n} \sum_{k=1}^n e_k.$$

Posons $u = \frac{1}{n} \sum_{k=1}^{n} e_k$. D'après ce qui précède,

$$Im p = Vect(p(e_1), ..., p(e_n)) = Vect(u).$$

Ensuite, si $x = x_1e_1 + ... + x_ne_n$ est un élément de E,

$$p(x) = 0 \Leftrightarrow \sum_{k=1}^{n} x_k p(e_k) = 0 \Leftrightarrow (\sum_{k=1}^{n} x_k) u = 0 \Leftrightarrow \sum_{k=1}^{n} x_k = 0 \Leftrightarrow x \in H.$$

Ainsi, p est la projection sur Vect(u) parallèlement à H.