

Série D - session 2011 : problème - corrigé

1 - a) Variations de g définie par $g(x) = (x - 1) e^{-x} + 2$.

g est définie sur IR.

On a
$$g'(x) = (2-x)e^{-x}$$
.

On a
$$sq[q(x)] = sq(2-x)$$

Pour x < 2, q'(x) > 0 alors q est croissante.

Pour x > 2, g'(x) < 0 alors g est décroissante.

Limites de q

On a
$$\lim_{x \to -\infty} g(x) = -\infty$$
 et $\lim_{x \to +\infty} g(x) = 2$

Tableau de variation

X	-∞		2		+∞
g'(x)		+	0	-	
g(x)	-∞	≯	2+e	-2	2

b) Montrons que g(x)=0 admet une solution unique α , $-1 < \alpha < 0$

g est décroissante sur
$$[2; +\infty[$$
 et $\limsup_{+\infty} g = 2$, donc $g(x) > 2$ pour tout x de $[2; +\infty[$ et l'équation

g(x)=0 n'admet pas de solution dans cet intervalle.

g est continue et strictement croissante sur
$$]-\infty;2]$$
, donc c'est une bijection de $]-\infty;2]$ sur $g(]-\infty;2]) = [-\infty;2+e^{-2}]$. Comme $[0,0,0]$, il existe un réel unique $[0,0,0]$ dans $[-\infty;2]$

tel que $g(\alpha) = 0$.

$$g(-1)=-2e+2<0$$
 et $g(0)=1>0$. et $g(\alpha)=0$

g(-1) < g(
$$\alpha$$
) < g(0), Comme g est continue et strictement croissante sur [0 ; 1] on a $-1<\alpha<0$.

c) signe de g(x)

$$g(x) > 2$$
 pour tout x de $[2; +\infty[$

g est continue et strictement croissante sur $-\infty$; 2],

donc pour tout $x < \alpha$, $g(x) \le g(\alpha)$, et pour tout $x > \alpha$, $g(x) \ge g(\alpha)$.

Comme $g(\alpha) = 0$, on α :

$$g(x) < 0$$
 pour tout x de $]-\infty$; $\alpha[g(x) > 0$ pour tout x de $]\alpha + \infty[$

2 -a) Calcul de limites de $x \mapsto f(x) = x(2 - e^{-x}) + 1$

$$\lim_{x \to -\infty} (2 - e^{-x}) = -\infty \quad \text{et} \quad \lim_{x \to -\infty} x = -\infty \quad \text{donc} \quad \lim_{x \to -\infty} f(x) = +\infty$$

$$\lim_{x \to -\infty} x e^{-x} \quad 0 \quad \text{et} \quad \lim_{x \to -\infty} 2x + 1 \quad \text{donc} \quad \lim_{x \to -\infty} f(x) = +\infty$$

$$\lim_{x\to +\infty} x e^{-x} = 0 \text{ et } \lim_{x\to +\infty} 2x + 1 = +\infty \quad \text{donc } \lim_{x\to +\infty} f(x) = +\infty$$

b) Dérivée de f

$$f'(x) = 2 - (e^{-x} - xe^{-x}) + 0 = 2 + e^{-x}(x - 1)$$

Par conséquent

$$f'(x) = q(x)$$

c) Expression de $f(\alpha)$

$$g(\alpha) = (\alpha - 1)e^{-\alpha} + 2$$

Alors

$$g(\alpha) = 0$$
 équivaut à $(\alpha - 1)e^{-\alpha} = -2$

C'est-à-dire

$$e^{-\alpha} = \frac{-2}{\alpha - 1}$$

Εt

$$f(\alpha) = 2\alpha + 1 - \alpha e^{-\alpha} = 2\alpha + 1 + \alpha \frac{2}{\alpha - 1}$$

D'où

$$f(\alpha) = 1 + \frac{2\alpha^2}{\alpha - 1}$$

d) Tableau de variation de f

D'après 1.c) g(x) < 0 pour tout $x \text{ de }] - \infty$; α [et g(x) > 0 pour tout $x \text{ de }] \alpha$; $+ \infty$ [

X	-∞	α	+ ∞
f '(x)	-	0	+
f(x)	+∞	$+\frac{2\alpha^2}{\alpha-1}$	+∞

3 - a) Calcul de limite

$$\lim_{X\to-\infty}\frac{f(x)}{x}=\lim_{X\to-\infty}(2+\frac{1}{x}-e^{-x})=-\infty$$

Donc la courbe admet une branche infinie parabolique de direction asymptotique (y'Oy) au voisinage de $-\infty$

b) Equation de la tangente (T)

$$\lim_{x \to +\infty} (f(x) - (2x + 1)) = \lim_{x \to +\infty} -xe^{-x} = 0$$

Donc la droite (D) d'équation y = 2x+1 est asymptote à (C) au voisinage de $+\infty$

c) Position de (C) par rapport à (D)

$$f(x) - (2x + 1) = -xe^{-x}$$

×	- 8		0		+∞
- xe ^{-x}		+	0	-	

Donc (C) est au-dessus de (D) sur $]-\infty;0[$ et au-dessous de (D) sur $]0;+\infty[$

4 - a) Equation de la tangente (T) en $x_0 = 1$.

f '(0) =1 et f(0)=1. Donc l'équation de la tangente à (\mathcal{C}) en x_0 = 0 est y = x+1

b) Recherche de la tangente (T') parallèle à (D)

La droite (T'), tangente à (C) au point A d'abscisse a est parallèle à (D) si f '(a) =1. Ce point A existe donc, si l'équation f '(a) =1 admet une solution. Comme f '(a)=q(a),

Ce point existe si l'équation q(x) = 1 admet une solution.

g est une bijection de $]-\infty;2]$ sur $g(]-\infty;2]$ = $]-\infty;2+e^{-2}]$. Comme $1\in]-\infty;2+e^{-2}]$, il existe un réel unique a dans $]-\infty;2]$ tel que g(a)=1.

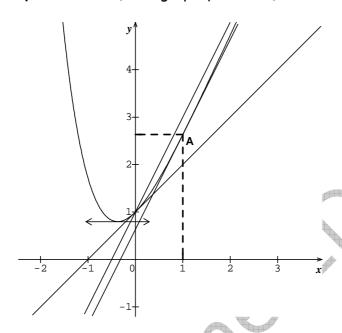
Donc le point A existe et est unique.

$$f'(a) = 1 \Leftrightarrow a = 1$$

$$f(1) = 3 - e^{-1}$$

Donc A a pour coordonnées $(1; 3 - e^{-1})$.

5. - Courbe représentative (unité graphique : 2 cm)



6 - a) Calcul de I_{λ} .

$$I(\lambda) = \int_0^{\lambda} x e^{-x} dx$$

$$u=x$$
 et $v'=e^{-x}$. On a $u'=1$ et $v=-e^{-x}$

$$I(\lambda) = \left[-xe^{-x}\right]_0^{\lambda} - \int_0^{\lambda} (-e^{-x}) dx$$

$$I_{\lambda} = e^{-\lambda}(-\lambda - 1) + 1$$

b) Calcul d'aire

L'unité d'aire est
$$\|\vec{j}\| \times \|\vec{j}\| = 2 \text{ cm} \times 2 \text{ cm} = 4 \text{ cm}^2$$

$$A(\lambda) = \left[e^{-\lambda}(-\lambda - 1) + 1\right].4cm^2$$

c) Limite de
$$A(\lambda)$$

$$\lim_{\lambda \to +\infty} A(\lambda) = 4cm^2$$