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Abstract 

 

Increasing host tolerance to damage-associated molecular patterns may lower the intensity of 

tissue injury in diseases associated with massive cell death, such as sepsis. Extracellular 

histones, released by dying cells, have devastating effects and have emerged as pivotal 

mediators of cell death and tissue destruction in sepsis. We report that the extracellular 

chaperon clusterin binds to histones and inhibits in vitro their inflammatory, cytotoxic and 

platelet aggregation properties. Results from a prospective study reveal that the serum levels 

of clusterin collapse in septic shock patients at ICU admittance and normalized in surviving 

but not in non surviving patients. The in vivo inflammatory response in response to LPS or 

histones is increased in clusterin-deficient (Clu
-/-

) mice compared to wild type mice. 

Moreover, Clu
-/-

 mice are more susceptible to experimental endotoxemia and sepsis than wild 

type mice. Finally, the injection of clusterin lowers the mortality of mice with CLP. This 

study demonstrates that clusterin has a key role in maintaining tissue tolerance by neutralizing 

extracellular histones. Restoring clusterin thus appears as a therapeutic and promising option 

in sepsis and other severe diseases associated with histone-induced tissue injuries. 
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Introduction 

 

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to 

infection
1,2

. An early antibiotic treatment associated with supportive cares is essential to 

control infection, but are often insufficient to prevent a lethal outcome
3
. Sepsis thus remains a 

leading cause of in-hospital mortality. Jamieson et al reported that host survival to severe 

sepsis or septic shock relies on a well balanced response including its resistance to infecton 

associated with an ability to decrease the magnitude of the inflammatory response and/or its 

negative impact on tissues, without directly targeting pathogens
4,5

. This pioneering study 

suggested that enhancing tissue tolerance to damage represents a promising complementary 

therapeutic option in sepsis
6
. 

 

Accumulating data underline the role of endogenous danger molecules released by dying cells 

in inducing severe inflammation and tissue damages. These harmful molecules, called 

damage-associated molecular patterns (DAMPs) or alarmins, are sensed by host cells via 

innate immunity receptors (pattern recognition molecules or PRM) and generate an 

inflammatory phenotype similar to the one induced by microbes. When released in excess, a 

condition that occurs during sepsis
7–9

, DAMPs are detrimental to the host by overwhelming 

inflammation and inducing cell injury. Histones have emerged as endogenous DAMPs with 

potent inflammatory and devastating cytotoxic properties. Released by dying cells in the 

extracellular milieu, histones are actually recognized as major mediators of tissue injury in a 

variety of severe diseases, such as sepsis, trauma and ischemia
10–14

. In addition to promoting 

the secretion of proinflammatory cytokines, histones also induce platelet aggregation and cell 

death
15–17

. In septic patients, levels of plasma nucleosomes and histones correlate with disease 

activity and severity
18,19

. Injected in mice, histones induce a strong inflammatory syndrome 

associated with massive tissue injury
13

. Although the pro-inflammatory properties of histones 

appear dependent on TLR2/TLR4 or TLR9 signalling
14,15,17,20

, their role in histone-induced 

cytotoxicity remains controversial
15,17,21

. 

 

Recent studies suggested that extracellular histones may represent therapeutic targets. Their 

neutralization with antibodies, heparin or activated protein C blocks their pro-inflammatory 

and pro-thrombotic activity, and reduces mortality in models of sterile inflammation and 

sepsis
13,22

. A similar protective role is also observed with some soluble PRM, such as the 

pentraxins CRP and PTX3
10,23

. However, the expression of these soluble PRM, such as PTX3 
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and CRP, is dramatically increased in sepsis patients, especially in non survivors
24,25

, 

suggesting that elevated levels of these histone-neutralizing molecules are not systematically 

associated with protection. 

 

Clusterin (also known as ApoJ), a 75-80 kDa heterodimeric disulphide-linked glycoprotein, is 

a multifaceted protein acting as an apoplipoprotein, a complement regulator and an 

extracellular chaperon
26

. As a chaperon, clusterin stabilizes a broad range of client proteins 

and keeps them soluble, inhibiting the formation of toxic aggregates
27

. The interaction of 

clusterin with client proteins induces their rapid clearance by hepatocytes
28

. Clusterin also 

confers cell protection by limiting apoptosis and necrosis in ischemia-reperfusion murine 

models
29

. Clusterin is found at relatively high concentrations in a variety of biological 

fluids
26,30

. In human, the concentrations of serum clusterin range from 50 to 400 µg/mL
31

 and 

its expression is hugely increased in case of inflammation
32–34

. We had previously reported 

that clusterin opsonizes late apoptotic cells and favors their elimination by phagocytes
35

, 

suggesting that clusterin may act as a soluble PRM. Interestingly, histones, which accumulate 

at the surface of late apoptotic cells
36

, have been identified as privileged clusterin-binding 

elements
35

. The objective of this study was to evaluate the capacity of clusterin to interact 

with extracellular histones and to evaluate the status and role of clusterin during sepsis. 
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Results 

 

Clusterin levels are decreased in septic shock patients 

We first quantified serum clusterin at ICU admission in a retrospective cohort of septic shock 

patients. Compared to heathy patients, the levels of clusterin were significantly decreased and 

were lower in non-surviving than in surviving patients (Supplemental Fig. S1a). To confirm 

and detail these observations, we conducted a prospective study that included 110 patients 

with septic shock and severe sepsis (Table 1). Clusterin, PTX3 and CRP were quantified at 

ICU admittance (day 0), and then day 3 and day 7. Results confirmed that septic shock 

patients had lower levels of clusterin than healthy subjects (Fig. 1a), with a more pronounced 

decrease in non-surviving than in surviving patients (Fig. 1a). More precisely, the levels of 

clusterin were significantly reduced in non-survivors at ICU admittance and did not normalize 

at day 3 and day 7 while, in contrast, they tended to normalize at day 7 in survivors (Fig. 1a). 

In agreement with a previous study
25

, the levels of PTX3 were strongly elevated, especially in 

non-surviving patients, and decreased in surviving and non-surviving patients at day 7 (Fig. 

1b). The levels of CRP were elevated in both groups and progressively returned to basal 

levels between day 3 and day 7 (Supplemental Fig. S1b). 

When septic shock patients were grouped according to the median concentration of clusterin 

at ICU admission, patients with levels <103 µg/mL had significantly higher SAPSII score, 

lower blood platelet count, higher blood lactic acid concentration and lower prothrombin time 

than patients with clusterin levels  ≥ 103 µg/mL (Table 1). 

As clusterin-client complexes may have led to underestimate clusterin quantification, we also 

analyzed clusterin by Western Blotting. Results confirmed a decrease of clusterin in the 

serums of septic shock patients, and showed that this decrease did not result from its 

degradation as no low molecular weight immunoreactive bands were detected (Supplemental 

Fig. S1c). 

Interestingly, the expression of clusterin mRNA was elevated in freshly isolated PBMC from 

septic shock patients, compared to healthy subjects (Fig. 1c, left panel) and monocytes 

isolated from septic shock patients spontaneously produced clusterin in vitro and, contrary to 

IL-6, its production was not modulated upon stimulation (Fig. 1c, right panel). These data 

suggested that the decrease of circulating clusterin levels in septic shock patients did not 

result from an inhibition of production. 
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Clusterin interacts with histones 

Clusterin chaperons a large variety of ligands, including damaged molecules
26

. As clusterin-

client molecules are eliminated in vivo
28

, we hypothesized that the decrease of clusterin levels 

in septic shock patients may result from its binding to danger molecules (i.e. histones, 

genomic DNA, HMGB1, CRT, HSP70, CIRP) present in the serums of sepsis patients
8
. 

Results showed that clusterin bound to immobilized histones, preferentially to histones H3 

and H4 (Fig. 2a); low or no binding was observed on CRT, CIRP, genomic DNA, HMGB1 

and HSP70 (Supplemental Fig. S2a). The interaction of clusterin with immobilized histones 

was higher than the one observed with CRP (Fig. 2a), used as a control
10

. The binding of 

clusterin to histones H3 and H4 was confirmed by SPR (data not shown). Interestingly, the 

addition of recombinant H4 in the serum of healthy subjects induced the formation of 

clusterin-H4 complexes (Fig. 2b), demonstrating that this interaction can occur in human 

serum. 

 

Clusterin-histone complexes are detected in the serums of septic shock patients 

We thus evaluated the presence of clusterin-H4 complexes in the serums of septic shock 

patients. Results showed that the levels of clusterin-H4 complexes were elevated in septic 

shock patients, especially in non-surviving compared to surviving patients (Supplemental Fig. 

S1d); clusterin-H4 complexes were low or undetectable in the serums of healthy subjects 

(Supplemental Fig. S1d). Immunoprecipitation confirmed the presence of circulating 

clusterin-histone complexes in the serums of septic shock patients (Supplemental Fig. S1e). 

The levels of nucleosomes, released by dying cells
37

, reflect severe tissue damages, especially 

in sepsis
18,38

. Elevated levels of circulating nucleosomes were detected in septic shock 

patients and, in agreement with previous studies
38

, the highest levels were detected in non-

survivors compared to survivors, especially at admittance and at day 3 (Fig. 1e and 

Supplemental Fig. 1f). Interestingly, the levels of circulating nucleosomes were inversely 

correlated with the levels of clusterin (Fig. 1f). 

 

Clusterin dampens histone-induced inflammation 

Histones induce the production of the inflammatory cytokines IL-6 and TNFα by monocytes 

(Supplemental Fig. S3a and
39,40

).We thus evaluated the capacity of clusterin to modulate 

histone-induced cytokine production. Results showed that clusterin reduced, in a dose-

dependent manner, the production of TNF and IL-6 by monocytes stimulated with non-toxic 

concentrations of histones (Fig. 3a). Importantly, clusterin did not modulate the production of 
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TNF and IL-6 in response to LPS or IL-1 (Fig. 3a); clusterin alone did not induce IL-6 and 

TNF secretion by monocytes (Fig. 3a). We next evaluated whether clusterin may neutralize 

the pro-inflammatory properties of histones contained in the serums of septic shock patients. 

Serums from selected patients induced the secretion of IL-6 and TNF by monocytes, 

whereas serums from healthy subjects did not, unless supplemented with histones (Fig. 3b). 

The inflammatory potential of serums from septic shock patients was prevented by adding 

recombinant clusterin (Fig. 3b). In agreement with its capacity to prevent cell activation, 

clusterin inhibited the binding of histones to cell membranes (Supplemental Fig. S3b&c). 

 

Clusterin protects against histone-induced cell death and platelet aggregation 

In vitro, histones induce endothelial cell death and promote platelet aggregation
13,16

. We first 

investigated whether clusterin may protect cells from histone-induced toxicity. Results 

showed that clusterin protected monocytes from histone-induced death (Fig. 4a). Excessive 

NETosis is proposed as a mechanism of tissue injury during septic shock
41,42

. As expected, 

histones induced NETs at a similar level that PMA (Fig. 4b), used as a positive control
43

. 

Clusterin prevented histone-induced but not PMA-induced NETosis (Fig. 4b). Clusterin alone 

did not induce cell death (Fig. 4a&b). We and others have reported that circulating histones, 

present in the serums from septic shock patients, are cytotoxic
44

. Serums from septic shock 

patients, but not from healthy subjects, were toxic for monocytes and endothelial cells (Fig. 

4c). Addition of recombinant clusterin to the serums of patients dramatically reduced their 

capacity to induce endothelial cell death (Fig. 4c). 

Histones promote platelet aggregation and thrombosis when released into the circulation
45

 and 

induce in vitro platelet aggregation
11

. We observed that histone-induced platelet aggregation 

was totally inhibited by clusterin (Fig. 4d). 

 

Histones induce clusterin secretion 

The expression of clusterin is increased in virtually all cell types in response to pro-

inflammatory signals
31

. We thus evaluated the capacity of histones to induce clusterin 

production. Histones, LPS and IL-1β plus TNF induced clusterin secretion by monocytes 

(Fig. 5a); the production of clusterin was associated to an increase of clusterin mRNA 

expression at 20 h (Fig. 5b). Western Blotting and microscopy revealed that human 

neutrophils have a preformed stock of clusterin (Supplemental Fig. S4) and, as reported
46

, in 

platelets (data not shown). Histones, PMA and LPS induced a rapid release of clusterin by 
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platelets and neutrophils (Fig. 5c). These data show that histones and inflammatory cytokines 

trigger the secretion of clusterin by different cell types. 

 

Clusterin is a non-redundant molecule that reduces histone-induced inflammation 

Proteomic analyses have identified several plasma proteins that may interact with histones
47

. 

We therefore evaluated the role of serum clusterin in the protection against histones. We first 

evaluated the impact of clusterin depletion on the ability of serums from healthy subjects to 

prevent histone-induced cytokine production. The capacity of serums from healthy subjects to 

prevent histone-induced IL-6 and TNFα production was reduced after clusterin depletion (Fig. 

6a) and the levels of IL-6 and TNF induced by histones were elevated in serum-free medium 

compared to medium supplemented with 10% of serum from healthy subjects (Fig. 6a). 

Similarly, the serum from wild type (Clu
+/+

) mice was more efficient than that clusterin-

deficient (Clu
-/-

) mice in preventing histone-induced monocyte activation (Fig. 6a). 

We next compared the inflammatory response of Clu
-/-

 and Clu
+/+

 mice to a sublethal (50 

mg/kg) intravenous injection of histones. Clu
-/-

 mice had higher levels of IL-6 and TNF than 

Clu
+/+

 mice (Fig. 6b); no difference was observed in response to PBS in both types of mice 

(Fig. 6b). As controls, the levels of IL-6 were similar in Clu
-/-

 and Clu
+/+

 mice after injection 

of IL-1β (Fig. 6c). 

 

Protective role of clusterin against sepsis 

A previous study reported that an intravenous injection of histones is lethal in mice
13

. We thus 

evaluated the capacity of endogenous clusterin to protect mice against a lethal challenge with 

histones. Upon intravenous injection of 100 mg/kg histones, all mice died within 15 min (Fig. 

7a). Interestingly, co-injection of clusterin and histones delayed death and rescued 28.5 % of 

mice (Fig. 7a). Based on this result, we thus evaluated the capacity of clusterin to protect mice 

against an endotoxinic shock, reported to be dependent on histones
13

, and to cecal ligation and 

puncture (CLP), a widely used murine sepsis model. The intraperitoneal injection of a non-

lethal dose of LPS (50 mg/kg) in wild type mice induced a decrease of the levels of clusterin 

associated to an increase of circulating nucleosomes and clusterin-H4 complexes (Fig. 7b). 

Interestingly, the expression of clusterin was enhanced in the peritoneum (Supplemental Fig. 

S5a), spleen, liver and kidney of LPS-challenged mice (Supplemental Fig. S5b). These results 

showed that the decrease of clusterin levels in LPS-challenged mice reflected that in septic 

shock patients. 
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Clusterin deficient (Clu
-/-

) mice were more sensitive than wild type (Clu
+/+

) mice to an 

intraperitoneal injection of a lethal dose (75 mg/kg) of LPS (Fig. 7c). Importantly, splenocytes 

from Clu
-/-

 and wild type mice produced similar levels of IL-6 upon in vitro stimulation with 

LPS, showing that both strains are similarly sensitive to LPS (Supplemental Fig. S5c). 

Finally, we observed that Clu
-/-

 mice were more susceptible to CLP-induced death that Clu
+/+

 

mice (Fig. 7d) and that the injection of clusterin lowered the mortality of mice with CLP (Fig. 

7e). 



CONFIDENTIEL 
 

Discussion 

 

Extracellular histones (released by dying cells) have emerged as critical mediators of tissue 

injury in severe diseases and their neutralization is protective against the tissue damages they 

induce. Soluble PRM can inhibit the inflammatory and cytotoxic properties of histones. In this 

study, we identified clusterin as a non-redundant histone-binding molecule that inhibits, in 

vitro and in vivo, their inflammatory and cytotoxic properties. Results also showed that the 

levels of clusterin collapsed in patients with severe sepsis and that the lack of normalization of 

clusterin, associated with elevated levels of extracellular histones, was predictive of death in 

septic patients. Finally, we show (i) that Clu
-/-

 mice are more sensitive to endotoxemia and 

sepsis-like than Clu
+/+

 mice and, (ii) that the injection of clusterin protects mice from sepsis-

induced death. Collectively, these results identify that clusterin acts as an endogenous histone 

inhibitory molecule and suggest that normalization of its levels appears as a therapeutic 

alternative for the treatment of severe pathologies associated with a massive release of 

histones in the extracellular milieu, such as sepsis. 

 

Clusterin is a pivotal regulator of extracellular proteostasis via its capacity to bind to and to 

participate to the elimination of misfolded proteins and protein aggregates
28,31

. We report that 

clusterin binds to histones, prototypic endogenous danger signals, and neutralizes their 

inflammatory and cytotoxic properties and their capacity to induce platelet aggregation. In 

agreement with a previous study
47

, we observed that the interaction of histones with clusterin 

occurs in serums that contain several other histone-binding molecules, such as albumin, 

lipoprotein and complement associated proteins, suggesting that clusterin constitutes a 

privileged histone-binding element. This hypothesis is reinforced by the fact that 

supplementing serums from sepsis patients with clusterin reduced their inflammatory and 

cytotoxic properties. 

The inflammatory versus cytotoxic properties of extracellular histones are dependent on their 

concentrations. At low concentrations, histones induce inflammatory cytokines via signalling 

PRR (TLR2, TLR4, TLR9 and NLRP3)
14,15,17,48

. At high concentrations, histones are 

cytotoxic, a property related to their ability to translocate within the cell membrane, forming 

channels that increase cell permeability that ultimately lead to cell death
49

. The protective role 

of clusterin may thus rely on its capacity to avoid the interaction of histones with cell 

membranes and signalling innate receptors. However, the mechanisms involved in clusterin-

histones interaction remain unknown. Based on the literature, one can hypothesize that (i) 
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histones, which are amphipathic molecules
50

, may interact with the hydrophobic globule-like 

domain of clusterin and, (ii) that positively charged residues of histones may interact with 

negatively charged carbohydrates of clusterin
51

. Interestingly, the binding capacity of 

clusterin to client proteins is enhanced in a mildly acidic milieu
52

, a condition that is 

commonly found during sepsis
53,54

. 

 

The levels of serum clusterin are dramatically elevated during inflammation and its 

expression is increased in several cell types upon stimulation with inflammatory mediators 

and microbial moieties
31,55

. Our results identify histones as novel clusterin-inducing 

molecules. In agreement with the inflammatory status associated to sepsis, we observed that 

PBMC from sepsis patients constitutively produced clusterin and expressed, as reported
56

, 

elevated levels of clusterin mRNA compared to healthy subjects. Nevertheless, the levels of 

clusterin collapsed while, in contrast, the levels of nucleosomes were elevated in patients, 

suggesting that the decrease of circulating clusterin would result from a massive and 

prolonged release of histones from damaged tissues, leading to an overflow of its buffering 

capacity. These results suggest that during severe sepsis, preformed and neosynthesized 

clusterin levels are not sufficient to maintain its concentration at levels sufficient to neutralize 

extracellular histones. 

 

Other histone-binding proteins have been identified, such as albumin
57

, thrombomodulin
58

, 

heparins
59

 and the pentraxins CRP and PTX3; these molecules, and especially pentraxins, 

have been reported protective against the deleterious properties of histones
10

. Previous studies 

have reported that PTX3, but not CRP
60

, is protective in experimental models of endotoxemia 

and sepsis
23,61

. Nevertheless, and contrary to clusterin, the levels of PTX3 were strongly 

elevated in sepsis patients and correlated with a higher risk of death
62

, suggesting that its 

protective role is limited in sepsis patients. One of the most intriguing observations of our 

study was that low levels of clusterin in sepsis patients were associated to a higher risk of 

death and negatively correlated with the levels of extracellular histones. A decrease of 

clusterin in sepsis patients has been previously reported
63,64

 and elevated levels of 

extracellular histones are associated with disease severity in systemic inflammation (sepsis, 

cancer, autoimmune diseases)
65

. Moreover; the in vitro properties of histones were observed 

at concentrations similar to the ones found in the serums of patients
66

. Similar to our results, 

previous studies suspected that the protective roles of clusterin are dependent on its 

concentrations and clusterin to client ratio
27,67

. Collectively, these results suggest (i) that the 
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amounts of clusterin are no longer sufficient to limit the toxicity of histones, the levels of 

which are very high in patients with severe septicaemia and, (ii) that this clusterin deficiency 

is not compensated for by other histone binding elements, such as pentraxins, even though 

they are present at high levels in the patient serums. This hypothesis is supported by in vivo 

experiments showing that clusterin-deficient mice are more sensitive than wild type mice to 

experimental endotoxemia and sepsis. 

 

Sepsis has been defined as a dysregulated response to infection, leading to tissue damages
68

. It 

is now accepted that sepsis-induced organ dysfunction results from the incapacity of the host 

to maintain or restore tolerance mechanisms
5,69

. Neutralizing endogenous danger signals 

generated during sepsis, and especially histones, is essential to prevent tissue destruction. 

Extracellular histones released by dying cells can then induce the killing of other cells, setting 

up a deleterious amplication loop of histone-induced cell death. A decrease in the levels of 

molecules protecting against the deleterious effects of histones would therefore have 

disastrous consequences. Our results demonstrate that clusterin has protective properties 

against histone-induced endothelial cell injury and thrombosis, two major features of septic 

shock
2,13

 and that clusterin-deficient mice are susceptible to CLP-induced sepsis. We 

therefore hypothesized that in vivo injection of clusterin would reduce the death of mice 

induced by injection of histones and dampen the severity of experimental sepsis. Results 

showed that the administration of clusterin decreased histone-induced lethality in wild type 

mice and reduced the mortality of mice subjected to experimental sepsis. Our results are in 

agreement with previous studies reporting that neutralizing histones, by using antibodies or 

activated protein C, reduced the mortality of mice subjected to CLP-induced sepsis
13,70,71

 or to 

ischemia/reperfusion
14,72

. Our results are in agreement with previous studies reporting that 

clusterin is protective in severely stressed tissues, especially in pathologies associated with 

massive cell death. As example, Clu
-/-

 mice exhibit a decreased survival rate in ischemia-

reperfusion injury model
73

 and clusterin prevents grafted organs form damage under ischemic 

conditions
74,75

 and limits in vivo the severity of autoimmune myocarditis
76

.  

 

Collectively, our study highlights a central role of clusterin in the host protection and 

tolerance to histone-mediated injury in sepsis. Maintaining elevated levels of clusterin appears 

as a promising therapeutic option in pathological conditions driven by histone toxicity and 

associated with clusterin consumption, such as sepsis. These results also identify histones as 



CONFIDENTIEL 
 

clusterin-client molecules, reinforcing its role as a scavenging and clearing molecule involved 

in tissue protection against endogenous danger molecules. 
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Material and Methods 

The protocols are detailed in the Supplementary Material and Methods. 

 

Patients and healthy subjects 

Blood from patients with sepsis admitted to the critical care departments of the university 

hospitals of Angers and Bordeaux were collected in accordance with the guidelines of the 

Ethics committee of the University Hospital of Angers (agreement 2013-26). Blood from 

healthy subjects were from the blood collection center of Angers (agreement ANG-2017-01). 

 

Binding assays 

The interaction of clusterin with partners was assessed by a solid phase assay. Purified 

histones, recombinant H2A, H2B, H3 and H4, HMGB1, HSP70, calreticulin (CRT), CIRP 

and microbial DNA were immobilized in 96-wells immunoassay plates (Nunc) before 

incubation with biotinylated clusterin, CRP or HSA). Plates were then incubated with 

streptavidin-HRP; bound proteins were detected using TMB. Results are expressed as OD 

values. 

 

Analysis of clusterin, nucleosomes and clusterin-histone complexes 

Human and mouse clusterin and circulating nucleosomes were quantified by commercial 

ELISA. Complexes formed by the interaction of clusterin with histone H4 were evaluated by 

a homemade assay using anti-clusterin and anti-H4 mAbs as capture and detection Abs, 

respectively. Bound Abs were detected using a HRP-conjugated anti-rabbit IgG Ab and the 

chromogenic substrate TMB. Results are expressed as OD values. The presence of clusterin-

histones complexes in human serums was also evaluated by immunoprecipitation. Briefly, 

serums were incubated with an anti-Clu mAb immobilized to protein A/G column and the 

presence of histones in the eluted proteins was evidenced by Western Blotting using an anti-

histone Ab; bound Abs were detected using a HRP-labeled anti-rabbit IgG Ab and 

chemilumiscence. 

 

Isolation and activation of human monocytes 

Human monocytes, isolated from healthy subjects as described
77

, were cultured with histones, 

LPS or IL-1, in the absence or presence of clusterin. In some experiments, monocytes were 

incubated with the serum from healthy subjects or septic shock patients diluted 1:10 (v:v); IL-

6 and TNFα were quantified in the cell culture supernatants by ELISA. 
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Generation of neutrophil extracellular traps (NETs) 

NETs were induced as described
78

. Briefly, neutrophils were seeded on poly-L-lysine-treated 

glass coverslips before stimulation with PMA or histones, without or with clusterin. 

Extracellular DNA was stained with the non-cell permeant DNA binding dye SYTOX Green. 

Fluorescence (ex=485 nm; em=538 nm) was recorded for 2 h at 10 min intervals; results are 

expressed as relative fluorescence between treated and non-treated cells. After fixation, slides 

were mounted in ProLongGold anti-fading reagent and images obtained using Nikon A1 R Si 

microscope. 

 

Cytokine quantification  

Human and mouse IL-6 and TNFα were quantified by ELISA in cell culture supernatants and 

serums, according to the manufacturer recommendations. 

 

Platelet aggregation assay 

Platelet-rich plasma (PRP) was isolated from healthy subjects. Platelets were resuspended in 

Tyrode’s buffer containing or not histone H4, preincubated or not with 25µg/mL clusterin. 

Platelet aggregation was measured on a TH-V2 optical aggregometer. 

 

Activation of murine splenocytes 

Spleen cells isolated form wild type (Clu
+/+

) and clusterin-deficient (Clu
-/-

) mice were cultured 

in serum-free medium supplemented or not with 10% serum (v:v) from Clu
+/+

 or Clu
-/-

 mice 

and activated with histones or LPS. IL-6 was quantified in cell culture supernatants by 

ELISA. 

 

Quantitative PCR 

RNA isolation and retrotranscription were performed as described
79

. The expression of the 

mRNA encoding indicated proteins was analyzed by qPCR. Relative quantification was 

calculated using the 2
-ΔΔCT

 method using RPS18, EF1A, TBP, RPL13A and PPIA as 

references. Results are expressed as relative mRNA expression; primer sequences are 

available upon request. 
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Western Blotting analysis 

Proteins were electophoretically separated on a 4-20% SDS-PAGE gel in non-reducing 

conditions and transferred to an Immobilon membrane. After saturation, membranes were 

incubated with goat polyclonal anti-human clusterin antibody and then with HRP-conjugated 

anti-goat IgG Ab; bounds antibodies were detected by chemiluminescence. 

 

In vivo models 

Clu
+/+

 and Clu
-/-

 mice injected intraperitoneally with LPS (experimental endotoxemia) or IL-

1β or injected intravenously with histones, pre-incubated or not with clusterin; In some 

experiments, kidney, liver and spleen were harvested for further analysis. CLP-induced sepsis 

model was performed as described
13

. Mice were injected or not with clusterin at day 1, 2, 3 

and 4 post-cecal ligation. Parameters analysed were survival, clusterin expression and levels 

of seric IL-6 and TNFα. Experiments were conducted according to institutional ethics 

committee of the Région Pays de la Loire (agreement 2012.193). 

 

Statistical analysis 

Data are shown as mean ± SEM and were analysed by the Mann Whitney test or the Kruskal 

Wallis test. Correlations were determined using Spearman’s rank correlation test. Survival 

curves were done using Kaplan-Meir method and compared using the Log-rank test. P<0.05 

was considered significant. 
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Figure legends 

 

Figure 1. Analysis of clusterin and histones in septic shock patients. a&b. Levels of 

clusterin (Clu) (a) and PTX3 (b) were quantified by ELISA in the plasmas of surviving and 

non surviving septic shock patients at admittance at the ICU (D0), D3 and D7 (mean ± SEM). 

a, the dotted line corresponds to the mean clusterin levels in healthy subjects; PTX3 is 

undetectable in the plasma of healthy subjects. c. The expression of clusterin mRNA and 

capacity to produce clusterin upon in vitro stimulation with LPS or histones (24 h stimulation) 

was analyzed by qPCR and ELISA, respectively, in PBMC of 10 healthy subjects (HS) and 10 

septic shock patients. Results are expressed in relative expression compared to GAPDH 

mRNA and in pg/mL, respectively (mean ± SEM). d. Levels of nucleosomes were evaluated 

by ELISA in the plasmas of surviving and non surviving septic shock patients at admittance at 

the ICU (D0), D3 and D7 (mean ± SEM). e. Correlation between the levels of circulating 

nucleosomes and clusterin levels in septic shock patients. a-d. *p<0.05; **p<0.01; ns, not 

significant (Mann Whitney U test). 

 

Figure 2. Clusterin binds to histones and form complexes ex vivo. a. The binding of 1.5 

nM biotinylated clusterin (Clu), CRP and HSA to immobilized recombinant H2A, H2B, H3, 

H4 and calf thymus histones was analyzed by ELISA. b. Serums from healthy subjects (n=5) 

were supplemented with the indicated concentrations of recombinant H4 and clusterin-H4 

complexes were quantified by ELISA. a-b. Results are expressed in OD values (mean  SEM, 

n=5). 

 

Figure 3. Clusterin prevents histone-induced IL-6 and TNF production. Monocytes 

(n=5) isolated from healthy subjects were stimulated or not with 50 µg/mL calf thymus 

histones, 50 ng/mL LPS or 50 ng/mL IL-1β, in the absence or presence of the indicated 

concentrations of clusterin (a) or incubated with 10% serum from septic shock patients 

supplemented or not with 25 µg/mL clusterin or 10% serum from healthy subject 

supplemented with 25 µg/mL clusterin or 50 µg/mL calf thymus histones (b). TNFα (a) and 

IL-6 (b) were quantified in the 24 h supernatants (mean ± SEM; Mann Whitney U test). a-b. 

*p<0.05; **p<0.01; ns, not significant (Mann Whitney U test). 

 

Figure 4. Clusterin prevents histone-mediated cell death and platelet aggregation. a. 

PBMC from healthy subjects (n=5) were incubated with 50 µg/mL calf thymus histones 
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without or with 25 µg/mL clusterin. Cell death was monitored by flow cytometry at 24 h and 

results were expressed as the percentage of Annexin V
-
 living cells. b. Neutrophils from 

healthy subjects (n=6) were stimulated or not with 50 µg/mL histones or 30 nM PMA, in the 

absence or presence of 25 µg/mL clusterin. Extracellular DNA was labeled using SYTOX 

green and fluorescence was quantified after 1 h incubation (left panel); right panel, 

fluorescence microscopy images of SYTOX staining (one of three experiments). c. 

Endothelial cells were cultured in medium supplemented with 10% serum from healthy 

subjects or from septic shock patients, supplemented or not with 25 µg/mL clusterin. Cell 

death was monitored by flow cytometry at 24 h and the results expressed as the percentage of 

Annexin V
+
 dead cells (n=6). d. Human platelets isolated from healthy subjects (n=4) were 

incubated with 50 µg/mL histones, without or with 25 µg/mL clusterin. Results are expressed 

as an index of aggregation. a-d. *p<0.05, **p<0.01; ns, not significant (Mann Whitney U 

test). 

 

Figure 5. Histones induce clusterin production. a. Monocytes from healthy subjects were 

stimulated with 25 µg/mL calf thymus histones, 50 ng/mL IL-1β + 50 ng/mL TNFα or with 

100 pg/mL LPS. The production of clusterin was quantified by ELISA in the 24 h 

supernatants. b. PBMC from healthy subjects were stimulated with 25 µg/mL calf thymus 

histones and clusterin mRNA was analyzed at the indicated time-points by qPCR; results are 

reperesentative of one of 4 experiments. c. Human platelets (left panel) and neutrophils (right 

panel) were stimulated or not with 25 µg/mL calf thymus histones, 50 nM PMA or 200 ng/mL 

LPS and clusterin was quantified by ELISA in the 2 h supernatants. Results are expressed in 

pg/mL (neutrophils) or in pg/mL/10
6
 elements (platelets) (n=5). A,c. *p<0.05 (Kruskal-Wallis 

test). 

 

Figure 6. Non redundant role of clusterin in histone-induced inflammation. a. Left panel, 

murine splenocytes were incubated or not with 50 µg/mL calf thymus histones in serum free 

medium supplemented with 10% serum from wild type (Clu
+/+

) or clusterin-deficient (Clu
-/-

) 

mice. Right panel, human monocytes were incubated or not with 50 µg/mL calf thymus 

histones in serum free medium supplemented with 10% non depleted or clusterin-depleted 

serums. IL-6 and TNFα were quantified in 24 h supernatants (n=5). b. Clu
+/+

 and Clu
-/-

 mice 

were injected with 50 mg/kg histones or PBS. Circulating IL-6 and TNFα were quantified at 2 

h. c. Clu
+/+

 and Clu
-/-

 mice were injected with 10 ng IL-1 or PBS. IL-6 was quantified in the 
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serums and peritoneal fluids collected at 2 h. a-c. *p<0.05, **p<0.01; ns, not significant 

(Mann Whitney U test). 

  

Figure 7. Clusterin protects mice from experimental sepsis. a. Wild type mice (n=7) were 

injected intravenously with PBS, 100 mg/kg calf thymus histones or 100 mg/kg histones plus 

30 mg/kg clusterin. b. Wild type mice (n=7) were injected intraperitoneally with 50 mg/kg 

LPS. The levels of clusterin, nucleosomes and clusterin-H4 complexes were determined at the 

indicated time points (mean ± SEM). c-d. Clu
+/+

 and Clu
-/-

 mice were injected 

intraperitoneally with 75 mg/kg LPS (c) or subjected to experimental sepsis (CLP) (d). e. 

Wild type mice were subjected to CLP and were injected with 50 µg clusterin at day 1, day 3 

and day 5. a,c-e. Survival curves were done using Kaplan Meir method and compared using 

the Log-rank test. * p<0.05; **p<0.01. b. * p<0.05; **p<0.01 (Kruskal-Wallis test). 

 

Supplementary Figure S1. a. The levels of clusterin were evaluated by ELISA in the serums 

of healthy subjects and of septic shock patients (n=50) (mean ± SEM). b. Levels of CRP were 

quantified by ELISA in the plasmas of surviving and non surviving septic shock patients at 

admittance at the ICU (D0), D3 and D7 (mean ± SEM). c. Western blotting analysis of 

clusterin in the plasmas of patients (left panel) and healthy subjects (right panel). 75 µg of 

proteins were loaded in each lane. d. The levels of clusterin-H4 complexes were evaluated by 

ELISA in the serums of septic shock patients and healthy subjects (mean ± SEM). e. Serums 

from two septic shock patients were immunoprecipitated with an anti-clusterin mAb and the 

presence of Clu-histone complexes was revealed by Western-Blotting with an anti-histone 

Ab. Results are representative of one out of 2 experiments. f. The levels of nucleosomes were 

evaluated by ELISA in the serums of septic shock patients and healthy subjects. a,b,d,f. 

*p<0.05, **p<0.01, ***p<10
-3

; ns, not significant (Mann Whitney U test). 

 

Supplementary Figure S2. The binding of 1.5 nM biotinylated clusterin to immobilized 

BSA, genomic DNA, high mobility group box 1 (HMGB1), calreticulin (CRT), Hsp70, cold 

inducible RNA-protein (CIRP), and calf thymus histones, was evaluated by ELISA. Results 

are representative in OD values (mean  SD, n=5). 

 

Supplementary Figure S3. a. Monocytes from healthy subjects were incubated in serum-free 

medium with increasing concentrations of calf thymus histones. IL-6 and TNFα were 

quantified by ELISA in the 24 h supernatants (n=5, mean ± SEM). ***p<10
-3

 (Kruskal-Wallis 
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test). b-c. MonoMac 6 cells were incubated for 10 min with 4 µg/mL AF488-labeled histones 

and increasing concentrations of clusterin. The binding of histones was evaluated by flow 

cytometry (b) or confocal fluorescence microscopy (c). b. Results, expressed as a percentage 

of inhibition of AF488-labeled histones, are representative of one of 3 independent 

experiments. c. Confocal microscopy images of MM6 cells incubated with 8 µg/mL AF488-

labeled histones in the absence (left panel) or presence (right panel) of 150 µg/mL clusterin. 

Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). Scale bar, 30 µm. 

 

Supplementary Figure S4. The expression of clusterin by neutrophils isolated from healthy 

subjects was analyzed by Western Blotting (each lane corresponds to cell extracts obtained 

from independent subjects) and by confocal microscopy (representative results from 1 of 4 

independent experiments). 

 

Supplementary Figure S5. a. The levels of clusterin were determined by ELISA in the 

serums of wild type mice injected intraperitoneally with PBS or 50 mg/kg LPS and collected 

at the indicated times. b. Western blotting analysis of clusterin expression in the spleen, liver 

and kidney of wild type mice injected with 50 mg/kg of LPS or PBS (n=2). 75 µg of proteins 

were loaded in each lane. Results are representative of one of two experiments. c. Splenocytes 

from Clu
+/+

 or Clu
-/-

 mice (n=5) were stimulated or not with 50 µg/mL histones or 50 ng/mL 

LPS. IL-6 was quantified by ELISA in the 24 h supernatants. a,c. *p<0.05; **p<0.01; ns, not 

significant (Mann Whitney U test). 
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Table 1. Baseline characteristics of patients. 

 

 

 

 All patients Serum Clu < 103 µg/mL   Serum Clu ≥ 103 µg/mL    

 n=110 n=46 n=64 P 

Baseline characteristics     

  Sex (M/F) 76/34 23/11 41/23 0.178 

  Age (years) 66.2 ± 13.8 [20-88] 67.3 ± 12.0 65.3 ± 15.0   0.456 

  Weight (Kg) 78.0 ± 18.9 [44-140] 81.4 ± 17.0 75.5 ± 19.9 0.114 

SOFA 9.0 ± 3.7 [1-19] 10.6 ± 3.7 7.8 ± 3.3 <0.001 

SAPSII 49.8 ± 18.3 [14-123] 54.6 ± 17.2  46.4 ± 18.5 0.021 

Organ Support at ICU admission, n (%)     

  Mechanical ventilation 64 (58.2) 29 (63.0) 35 (54.7) 0.381 

  PaO2/FiO2 214.2 ± 137 [28-757] 212.4 ± 128 215.7 ± 146 0.925 

  Invasive/non invasive ventilation 54/10 26/3 28/7 0.428 

  Renal replacement therapy 16 (14.5) 5 (10.9) 11 (17.2) 0.353 

  Use of vasopressors 84 (76.4) 37 (80.4) 47 (73.4) 0.394 

 Laboratory values at admission     

  Serum creatinine (µmol/L) 180.3 ± 171 [26-1311] 184.7 ± 132 178.8 ± 185 0.859 

  Hemoglobin (g/dL) 11.0 ± 2.1 [5.3-16.4] 11.3 ± 2.6 10.8 ± 1.7 0.219 

  White blood cells (G/L) 14.7 ± 9.4 [0.3-41.4] 13.8 ± 10.3 15.3 ± 8.7 0.394 

  Blood neutrophils (G/L) 13.2 ± 9.4 [0.0-37.7] 12.3 ± 9.6 13.8 ± 9.3 0.506 

  Platelets (G/L) 200.0 ± 158 [14.0-999.0] 130.0 ± 87 249.3 ± 178 <0.001 

  Blood lactate (mmol/L) 2.65 ± 3.1 [0.3-25.0] 3.37 ± 2.7 2.1 ± 3.3 0.037 

  Prothrombin time (%) 57.4 ± 20 [10-96] 51.6 ± 21 61.5 ± 19.1 0.015 

  Serum fibrinogen (g/L) 5.32 ± 2.1 [1.2-10.3] 5.4 ± 2.3 5.3 ± 2.0 0.720 

Microbiological analysis; n (%)     

  Positive blood cultures 38 (34.5) 19 (41.3) 19 (29.7) 0.208 

  Beta-hemolytic streptococcus 13 (11.8) 7 (15.2) 6 (9.4) 0.382 

  Staphylococcus  11 (10.0) 4 (8.7) 7 (10.9) 0.758 

  Gram negative rods 29 (26.4) 16 (34.8) 13 (20.3) 0.124 

  Polymicrobial 7 (6.4) 2 (4.3) 5 (7.8) 0.696 

  Other 1 (0.9) 0 (0) 1 (1.6) 1.000 

Organ support at any time of ICU stay; n (%)     

    Mechanical ventilation 65 (59.1) 30 (65.2) 35 (54.7) 0.327 

    Renal replacement therapy 22 (20.0) 11 (23.9) 11 (17.2) 0.384 

    Use of vasopressors 86 (78.2) 37 (80.4) 49 (76.6) 0.628 

ICU length of stay, days  11.2 ± 14.7 [1-90] 11.0 ± 15.5  11.3 ± 14.3  0.916 

ICU mortality; n (%) 19 (17.3) 14 (30.4) 5 (7.8) 0.002 
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