Pr. Latrach ABDELKBIR

Produit scalaire dans le plan

I. Produit scalaire de deux vecteurs

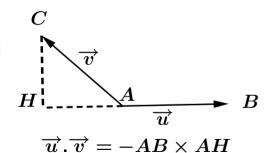
PP Définition:

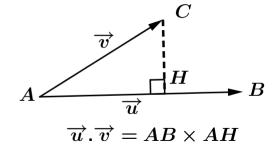
Soient \vec{u} et \vec{v} deux vecteurs du plan et \vec{A} , \vec{B} et \vec{C} trois points du plan tels que : $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

Soit H le projeté orthogonal de C sur la droite (AB).

Le **produit scalaire** des deux vecteurs \vec{u} et \vec{v} , noté $\vec{u}.\vec{v}$, est le **nombre réel** défini comme suit :

- Si \overrightarrow{AB} et \overrightarrow{AH} ont même sens, alors : $\overrightarrow{u.v} = AB \times AH$.
- Si \overrightarrow{AB} et \overrightarrow{AH} ont des sens contraires, alors : $\overrightarrow{u.v} = -AB \times AH$.



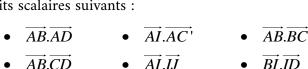


Application 0:

Soit ABCD un trapèze isocèle tel que:

AB = 6 et CD = 5 et soient I et J les milieux respectifs de [AB] et [CD]. (voir la figure).

Calculer les produits scalaires suivants :



Propriété: Formule trigonométrique du produit scalaire

- Soient \vec{u} et \vec{v} deux vecteurs du plan, on a : $\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u};\vec{v})$.
- Soient A, B et C trois points du plan, on a : $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(BAC)$.

Application 2:

1) Soient \vec{u} et \vec{v} deux vecteurs du plan. Calculer $\vec{u}.\vec{v}$ dans les deux cas suivants :

$$\bullet \|\vec{u}\| = 1, \|\vec{v}\| = \sqrt{3}, et\left(\overline{\vec{u};\vec{v}}\right) \equiv \frac{\pi}{6} [2\pi].$$

$$2 \|\vec{u}\| = 2, \|\vec{v}\| = \frac{2}{\sqrt{2}}, et(\vec{u}; \vec{v}) = \frac{5\pi}{4} [2\pi].$$

- **2)** Soit ABC un triangle équilatéral tel que AB = 4. Calculer $\overrightarrow{AC}.\overrightarrow{CB}$.
- 3) Soit ABC un triangle isocèle en A tel que BC = 6. Calculer $\overrightarrow{AC}.\overrightarrow{AB}$.
- **4)** Soient \vec{u} et \vec{v} deux vecteurs du plan. Déterminer les mesures possibles de l'angle orienté $(\vec{u}; \vec{v})$ sachant que : $||\vec{u}|| = 4$, $||\vec{v}|| = \sqrt{2}$, $et \ \vec{u}.\vec{v} = -2\sqrt{6}$.

Exercice:

ABC un triangle isocèle en A tels que AB = 3 et $BC = 3\sqrt{3}$.

- 1) Calculer $\overrightarrow{CA}.\overrightarrow{CB}$.
- **2)** En déduire $A\widehat{C}B$ et $C\widehat{A}B$.

II. Propriétés du produit scalaire :

Tropriores an promiti son

PP Propriété :

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs du plan et k un réel. On a :

- $\vec{u}\vec{v} = \vec{v}\vec{u}$
- $(k\vec{u})\vec{v} = \vec{u}.(k\vec{v}) = k(\vec{u}\vec{v})$
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- $\vec{u} \cdot \vec{u} = \vec{u}^2 = ||\vec{u}||^2 (\vec{u}^2 \text{ est appelé } carré scalaire de <math>\vec{u})$

Application 3:

Soient \vec{u} et \vec{v} deux vecteurs du plan tels que : $\|\vec{u}\| = 2$, $\|\vec{v}\| = 3$, $et(\vec{u}; \vec{v}) = \frac{2\pi}{3}[2\pi]$.

Calculer $\vec{u}.\vec{v}, \vec{u}^2, \vec{v}^2$ et $(2\vec{u} - \vec{v}).(\vec{u} + \frac{3}{2}\vec{v})$.

Propriété:

Soient \vec{u} et \vec{v} deux vecteurs du plan. On a :

- $\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v})^2 = \|\vec{u}\|^2 + 2\vec{u}.\vec{v} + \|\vec{v}\|^2$.
- $\|\vec{u} \vec{v}\|^2 = (\vec{u} \vec{v})^2 = \|\vec{u}\|^2 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2$.
- $(\vec{u} + \vec{v}).(\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2 = ||\vec{u}||^2 ||\vec{v}||^2.$
- $\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 \|\vec{u}\|^2 \|\vec{v}\|^2).$
- $\vec{u} \cdot \vec{v} = \frac{1}{2} (-\|\vec{u}\|^2 \|\vec{v}\|^2 \|\vec{u} \vec{v}\|^2).$

Application :

1) Soient \vec{u} et \vec{v} deux vecteurs tels que : $\|\vec{u}\| = 2$, $\|\vec{v}\| = 3$, $et(\vec{u}; \vec{v}) = \frac{\pi}{2} [2\pi]$.

Calculer: $\overrightarrow{u.v}$ et $(\overrightarrow{2u} - \overrightarrow{3v})^2$.

2) Soient \vec{u} et \vec{v} deux vecteurs tels que : $\|\vec{u}\| = \sqrt{2}$, $\|\vec{v}\| = 2$, $et \|\vec{u} + \vec{v}\| = 7$.

Calculer: $\vec{u}.\vec{v}$ et $\|\vec{u} - \vec{v}\|$.

Propriété :

Soient $A, B \ et \ C$ trois points du plan, on a : $\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2} (AB^2 + AC^2 - BC^2)$.

O Démonstration:

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2} \left(\left\| \overrightarrow{AB} \right\|^2 + \left\| \overrightarrow{AC} \right\|^2 - \left\| \overrightarrow{AB} - \overrightarrow{AC} \right\|^2 \right)$$

$$= \frac{1}{2} \left(\left\| \overrightarrow{AB} \right\|^2 + \left\| \overrightarrow{AC} \right\|^2 - \left\| \overrightarrow{AB} + \overrightarrow{CA} \right\|^2 \right)$$

$$= \frac{1}{2} \left(AB^2 + AC^2 - BC^2 \right)$$

Application 5:

1) Soient A, B et C trois points du plan tels que : AB = 1, $AC = \sqrt{3}$ et $BC = \sqrt{2}$.

Calculer : \overrightarrow{AB} . \overrightarrow{AC} et \overrightarrow{BC} . \overrightarrow{AB} .

2) Soit ABC un triangle rectangle en A. Calculer : $\overrightarrow{AB.AC}$.

Propriété :

Soient \vec{u} et \vec{v} deux vecteurs du plan.

 \vec{u} et \vec{v} sont orthogonaux, et on écrit $\vec{u} \perp \vec{v}$, si et seulement si $\vec{u} \cdot \vec{v} = 0$

Application ©:

Soient \vec{u} et \vec{v} deux vecteurs orthogonaux du plan tels que : $\|\vec{u}\| = 4$, et $\|\vec{v}\| = 5$.

Déterminer le réel m sachant que : $(m\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = 13$.

Exercice:

ABC est un triangle AB = 1, $AC = \sqrt{2} \operatorname{et} \cos(\hat{A}) = -\frac{1}{2\sqrt{2}}$.

1) Calculer $\overrightarrow{AB}.\overrightarrow{AC}$.

2) Considérons D un point du plan défini par : $\overrightarrow{AD} = \frac{1}{3}(\overrightarrow{AB} + 2\overrightarrow{AC})$.

a)- Calculer $\overrightarrow{AB}.\overrightarrow{AD}$.

b)- Conclure.

III. Théorème d'Al-Kashi

Soit ABC un triangle. On a : $\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$.

Donc: $BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB}.\overrightarrow{AC}$.

Par conséquent : $BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos(BAC)$.

// Théorème: Théorème d'Al-Kashi

Soit *ABC* un triangle. On a :

•
$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos(A)$$

•
$$AB^2 = AC^2 + BC^2 - 2AC \times BC \times \cos(C)$$

•
$$AC^2 = AB^2 + BC^2 - 2AB \times BC \times \cos(B)$$

1) ABC est un triangle tel que AB = 3, AC = 5 et $A = \frac{\pi}{4}$. Calculer BC.

2) MNP est un triangle tel que $MN = \sqrt{3}$, NP = 2 et $N = \frac{5\pi}{6}$. Calculer MP.

IV. Théorème de la médiane

Soit ABM un triangle et I le milieu de AB.

Calculons $MA^2 + MB^2$ en fonction de MI et AB.

$$MA^2 + MB^2 = \overrightarrow{MA}^2 + \overrightarrow{MB}^2 = (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2 = 2 MI^2 + \frac{1}{2}AB^2$$

Soit ABM un triangle et I le milieu de [AB]. On a : $MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$.

Application ®:

ABM un triangle et I, J et K les milieux respectifs de AB, AM et BM.

Sachant que : AB = 4, AM = 3 et BM = 4, calculer les distances MI, AK et BJ.

Exercice:

ABCD est un parallélogramme tel que $\widehat{BAD} = \frac{\pi}{3}$ et AD = 4 et CD = 6 et soit O le milieu du segment [AB].

- 1) Calculer les distances BD et AC.
- **2)** Montrer que pour tout point M du plan que $MA^2 + MB^2 = 2MO^2 + 18$.
- **3)** En déduire l'ensemble des points M du plan tel que $MA^2 + MB^2 = 24$.

V. Relations métriques dans un triangle rectangle

Propriété :

Soient ABC un triangle et H le projeté orthogonal de A sur (AB) et I le milieu de [BC].

ABC est rectangle en ABC si et seulement si l'une des relations suivantes est vérifiée :

$$\checkmark BC^2 = AC^2 + AB^2.$$

$$\checkmark AB^2 = BH \times BC$$
.

$$\checkmark AH^2 = HB \times HC$$
.

$$\checkmark AI = \frac{1}{2}BC$$
.

Application 9:

Soient ABC un triangle rectangle en A et H le projeté orthogonal de A sur (BC) et AB=3 , AC=4 .

Calculer les longueurs BC, HC, HB et AH

Exercice de synthèse :

Soit ABC un triangle tel que : AB = 3 et AC = 1 et $.\cos(BAC) = \frac{-1}{3}$

- 1) Vérifier que : \overrightarrow{AB} . $\overrightarrow{AC} = -1$.
- **2)** Calculer la distance BC.
- **3)** Soient I et J les milieux respectifs de $\begin{bmatrix} BC \end{bmatrix}$ et $\begin{bmatrix} AC \end{bmatrix}$.

a/- Calculer AI et BJ.

b/- Calculer $\overrightarrow{IA}.\overrightarrow{IB}$.

4) Soit E un point du plan tel que : $\overrightarrow{AE} = \frac{4}{9} \overrightarrow{AB}$.

a/- Ecrire le vecteur \overrightarrow{IE} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .

b/- Montrer que les droites (AB) et (IE) sont perpendiculaires .