L2 Géographie UE Fondamentale 2

Statistiques - COURS 1

Salle 125

Intervenants: Nadège Martiny & Joseph Boyard-Micheau

UFR Sciences Humaines (Département de Géographie) UMR Centre de Recherches de Climatologie (CRC)

- 12 séances
- Epreuve Terminale : 12^{ème} séance, 16/12/2011 (durée 1h30)
- + Contrôle continu : 2 mini-épreuves surprise (notées sur 10)
- Emploi du temps : Tous les vendredis 10h-12h G1 / 13h-15h G2
- Organisation des séances : Cours/TD
- Outil Excel
- Fonctionnement de la salle informatique

Bibliographie

- **Boursin J.L.**: Comprendre les statistiques descriptives. Armand-Colin, 1998
- Chemla G.: Statistiques appliquées à la géographie. Nathan Université, 1995
- **Groupe Chadule**: Initiation aux pratiques statistiques en géographie. Masson, 1997
- Lahousse P. & Piedanna Y.: L'outil statistique en géographie. Tome 2: analyse bivariée. Armand-Colin, coll. Synthèse, 1999
- Saporta G.: Probabilités, analyse des données et statistiques. Technip, 1990

• La compréhension des faits **géographiques** passe par la mise en évidence d'éventuelles **interactions** entre les phénomènes.

Exemple:

Y a-t-il des interactions entre l'intermodalité d'un réseau et la taille de l'agglomération?

Vision futuriste de la Gare de Dijon à l'horizon 2013

Gare d'Auxerre

• Le géographe se pose donc souvent la question de l'existence d'une relation de dépendance entre deux variables.

* Définition d'une variable :

Caractère mesuré sur un certain nombre d'observations. En géographie les observations décrivent souvent l'espace ou le temps.

Exemple:

Mesures de la radioactivité en France dans les années 1988-1991, à la suite de Tchernobyl (avril 1986)

Localité	Département	Césium 137 (Bq/m²)
Saales	9 OBSERVATIONS	8675
Brumath	décrivant l'espace	2 VARIABLES
Preuschdorf	67	6505
Neuve-Eglise	67	5407
Rothau	67	3249
Saverne	67	1078
Linthal	68	20200
Kruth	68	18780
Durmenach	68	17140

Extrait de base de données CRII-RAD, organisme drômois (Dumolard, Dubus et Charleux, « Les statistiques en Géographie »)

Plan du cours

CHAPITRE I.

Relation entre deux caractères ou plus

• Le géographe est également souvent amené à étudier la distribution (=répartition des valeurs) de variables dans des populations très nombreuses.

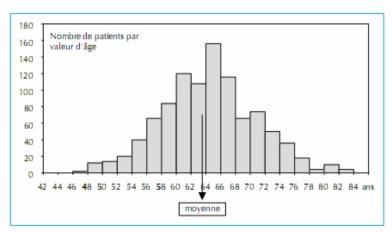


Figure 1, extraite de Laporte et Quenet, 2007

Exemple:

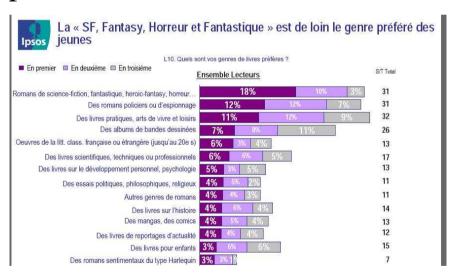
Distribution de l'âge sur une cohorte de 1000 patients au CHU de St Etienne

Variable = âge des patients

* Définition d'une population :

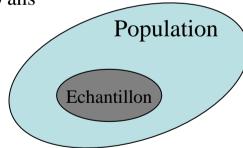
Ensemble analysé par les statistiques, qui constitue un univers statistique.

• Les statistiques permettent aussi d'étudier des échantillons à partir desquels les paramètres de l'ensemble de la population peuvent être estimés.



<u>Exemple :</u>

Sondage IPSOS sur les genres de livres préférés des 18-30 ans



* Définition d'un échantillon :

Sous-ensemble des éléments d'une population choisis au hasard parmi celle-ci.

Plan du cours

CHAPITRE I.

Relation entre deux caractères ou plus

CHAPITRE II.

Echantillonnage

• Les variables géographiques sont par ailleurs en constante **évolution dans le temps**, il est donc intéressant de mener des analyses temporelles **variable par variable**.

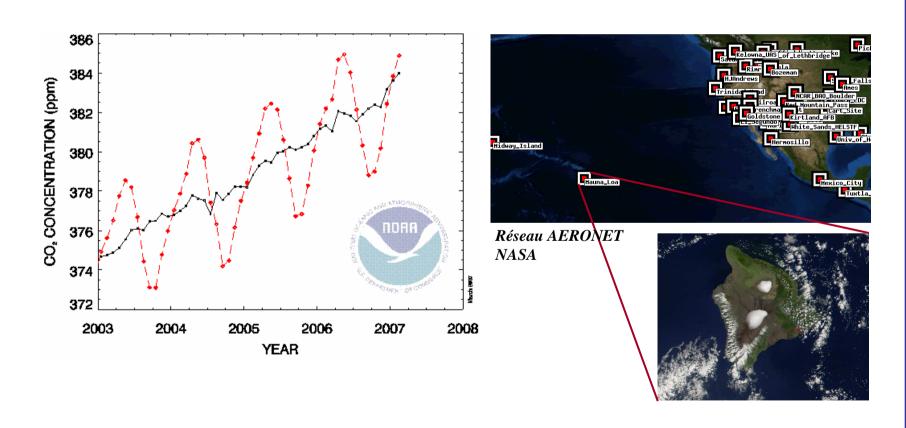
* Définition d'une série chronologique :

Suite d'observations chiffrées portant sur une variable (=caractère) unique, et ordonnées dans le temps.

On l'appelle également chronique ou série temporelle.

Exemple:

Evolution de la concentration atmosphérique en CO2 à **Mauna Loa** en moyennes mensuelles (rouge) et corrigées de la saison (noir)



Plan du cours

CHAPITRE I.

Relation entre deux caractères ou plus

CHAPITRE II.

Echantillonnage

CHAPITRE III.

Analyse de séries chronologiques

Chapitre I

- I.1 Démarche générale
- I.2 Relation entre deux caractères qualitatifs :

 Tableau de contingence & Test du khi-deux
- I.3 Relation entre un caractère qualitatif et un caractère quantitatif : Analyse de variance
- I.4 Relation entre deux caractères quantitatifs :

 Corrélations et régressions linéaires simples
- I.5 Relation entre plus de deux caractères quantitatifs : Corrélations et régressions linéaires multiples

Démarche générale

Hypothèse de l'existence d'une relation entre 2 caractères

Constitution d'un tableau de données (outil informatique)

Quantification globale de la relation (intensité)

Test de significativité de la relation

Effectué <u>si et seulement</u> si les données sont entachées d'erreur <u>aléatoire</u> (données d'un échantillon et non d'une population, erreurs de mesures non systématiques)

Si la relation est significative, a-t-elle un sens?

Cette étape fait appel à la <u>culture</u> du géographe

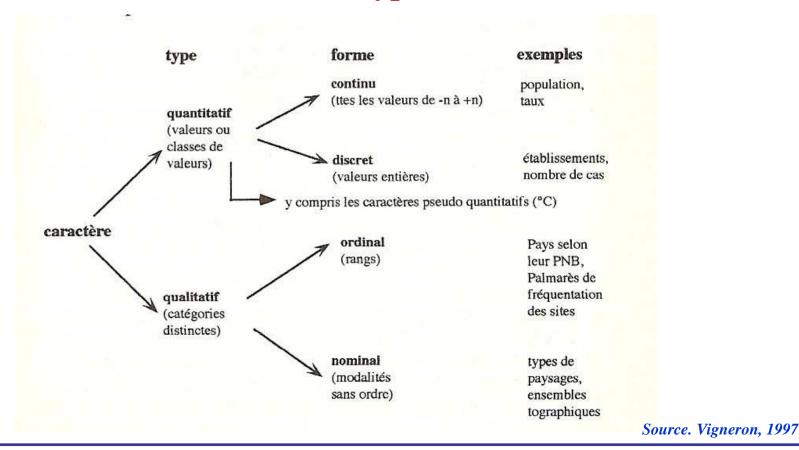
Exemple

A propos de la **relation** entre :

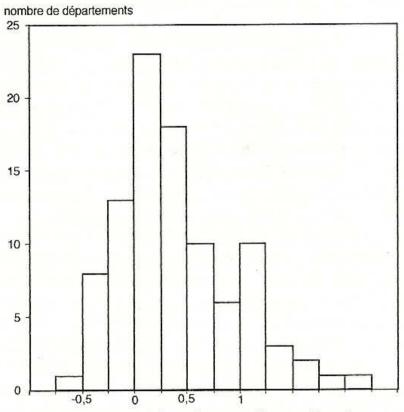
- la vente annuelle de chaussures pour 1000 habitants (Y)
- le taux annuel de maladies cardio-vasculaires pour 1000 habitants (X) en Europe
- Bonne relation statistique <u>mais</u> on ne peut en déduire pour autant que la relation est logique :
 - (i) Acheter beaucoup de chaussures provoque-t-il des maladies cardio-vasculaires?
 - (ii) Les malades cardio-vasculaires achètent-ils plus de chaussures que les autres?
- En réalité, X et Y sont toutes deux liées à une 3ème variable, assez <u>explicative</u> pour X et Y : le niveau de vie moyen des différents pays (Z)
- Imaginons maintenant qu'on s'intéresse à la relation entre X et Z
- Si la relation statistique entre ces 2 variables est significative, on peut supposer qu'il existe une relation <u>physique</u> ou de <u>cause à effet</u> entre elles... cependant, elle ne peut en aucune manière <u>le prouver !!!</u>

Classification des variables

• Avant d'effectuer le calcul de la relation statistique entre des variables, il faut identifier leur type.



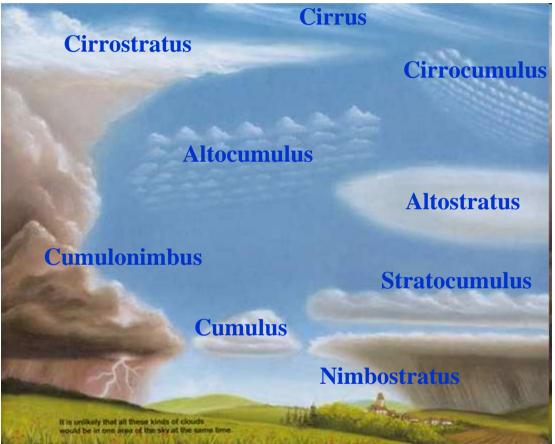
Identification du type de variable



Taux moyen annuel d'accroissement démographique des départements français métropolitains entre 1982 et 1990

VARIABLE DE TYPE QUANTITATIF ET DE FORME CONTINUE

Identification du type de variable



Source. http://la.climatologie.free.fr

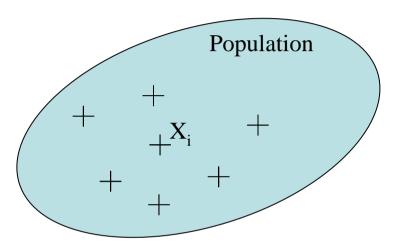
VARIABLE DE TYPE QUALITATIF ET DE FORME NOMINALE

Types d'analyses (2 variables)

TYPE DE VARIABLES	QUALITATIVE	QUANTITATIVE
QUALITATIVE	TABLEAU DE CONTINGENCE & TEST DU KHI-2	ANALYSE DE VARIANCE
QUANTITATIVE	ANALYSE DE VARIANCE	REGRESSION & CORRELATION LINEAIRE SIMPLE

• Moyenne arithmétique :

$$M_X = \frac{1}{N} \sum_{i=1}^{N} X_i$$



 X_i : individus appartenant à la population

N: nombre total d'individus

Propriété : elle est le centre de gravité d'une distribution

$$\sum_{i=1}^{N} (X_i - M_X) = 0$$

La moyenne est sensible aux valeurs extrêmes, elle décrit donc mal la tendance centrale d'une distribution dissymétrique, au contraire de la médiane

• Médiane :

Valeur telle que la moitié des valeurs lui est inférieure et l'autre moitié supérieure

Soient N individus:

- Classer d'abord les N valeurs des individus par ordre croissant
- 2 cas de figures :
 - * N impair : la médiane est la valeur de la variable de rang (N+1)/2
 - * \underline{N} pair : la médiane correspond à la moyenne des valeurs de rangs N/2 et (N+2)/2

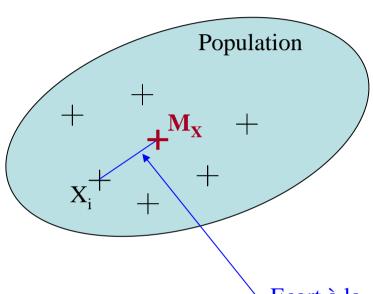
Exemple:

Série 1, 1, 4, 5, 12 N=5 (impair) donc médiane = 3ème valeur de la série : 4

• Variance:

$$V = \frac{1}{N} \sum_{i=1}^{N} (X_i - M_X)^2$$

Il s'agit du carré de l'écart-type, qui représente l'écart moyen des valeurs à leur moyenne arithmétique



Ecart à la moyenne pour l'individu X_i

L'écart-type est noté σ :

$$\sigma = \sqrt{V}$$

UNE SEULE VARIABLE

• Covariance:

$$COV = \frac{1}{N} \sum_{i=1}^{N} (X_i - M_X)(Y_i - M_Y)$$

Permet d'étudier les variations simultanées de **DEUX VARIABLES** quantitatives par rapport à

leur moyenne respective

X_i: individus de la variable X

Y_i: individus de la variable Y

M_x: moyenne des individus de la variable X

M_Y: moyenne des individus de la variable Y

N: nombre d'individus

COV >>0 : les 2 variables varient dans le même sens

COV = 0: pas de relation linéaire entre les 2 variables

COV << 0 : les 2 variables varient en sens inverse

Chapitre I

- I.1 Démarche générale
- I.2 Relation entre deux caractères qualitatifs :

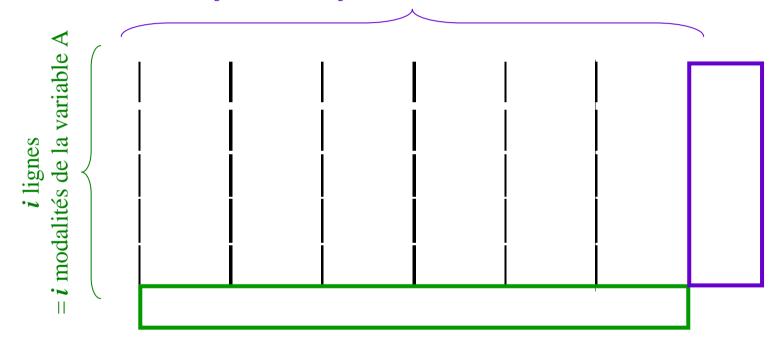
 Tableau de contingence & Test du khi-deux
- I.3 Relation entre un caractère qualitatif et un caractère quantitatif : Analyse de variance
- I.4 Relation entre deux caractères quantitatifs :

 Corrélations et régressions linéaires simples
- I.5 Relation entre plus de deux caractères quantitatifs :

 Corrélations et régressions linéaires multiples

Tableau de contingence

j colonnes = j modalités de la variable B



La dernière ligne correspond aux effectifs marginaux de chaque colonne => La dernière colonne correspond aux effectifs marginaux de chaque ligne => Répartition des effectifs pour 1 caractère, sans tenir compte du second

Propriétés d'un tableau de contingence

(1) Symétrie

(2) Ne contient pas de nbres <0

(3) Les sommes en ligne et en colonne ont une signification

Ex. Les sommes en ligne composent une dernière colonne qui représente la distribution du caractère Y

3 cas de figures

(1) Cas d'une liaison parfaite

(2) Cas d'une absence de liaison

(3) Cas ni d'une liaison parfaite ni d'une absence de liaison :

Cas réel

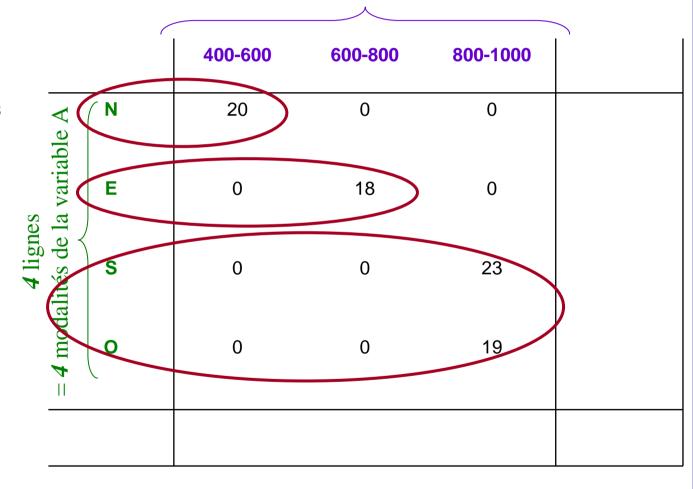
(1) Cas d'une liaison parfaite

3 colonnes = 3 modalités de la variable B

Exemple

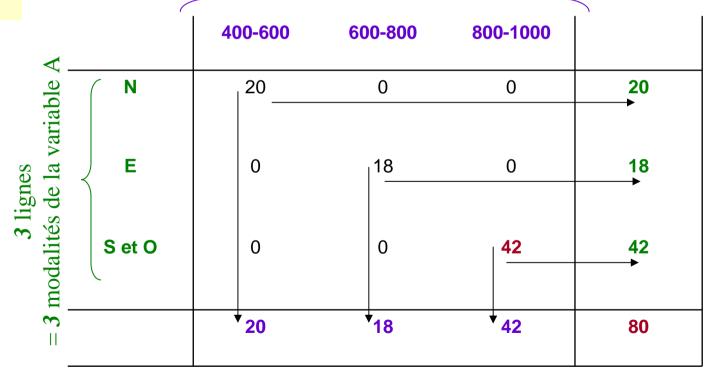
On étudie la relation entre les précipitations totales annuelles réparties (variable B) en 3 modalités (400-600, 600-800, 800-1000 mm/an) et observées dans 80 stations d'une région. Ces stations ont une

Ces stations ont une exposition (variable A) selon 4 modalités (N, S, E ou W).



(1) Cas d'une liaison parfaite

On regroupe les stations et les modalités ayant des caractéristiques analogues (S et O)



(1) Cas d'une liaison parfaite

- La liaison est <u>parfaite</u> car on obtient (en <u>permutant</u> ou en <u>regroupant</u> certaines modalités) un tableau de contingence contenant des <u>nombres</u> positifs sur la diagonale et des <u>zéros</u> ailleurs.
- En outre, chaque modalité de la variable A correspond à une unique modalité de la variable B et réciproquement.

Cls : dans notre cas d'études, la <u>pluviométrique</u> annuelle dépend <u>complètement</u> de <u>l'exposition</u> de la station météorologique

3 cas de figures

(1) Cas d'une liaison parfaite

(2) Cas d'une absence de liaison

(3) Cas ni d'une liaison parfaite ni d'une absence de liaison :

Cas réel

Pas de liaison apparente ici ...

Dans ce cas, il faut établir le tableau des **profils-lignes** et le tableau des **profils-colonnes**

A B	400-600	600-800	800-1000	
N	8	20	12	40
E	4	10	6	20
S	2	5	3	10
0	2	5	3	10
	16	40	24	80

Tableau des profils-lignes : chaque élément d'une ligne est divisé par le total de la ligne, le tout multiplié par 100

		A B	400-600	600-800	800-1000	
40	-	N	8/40*100	20 /40*100	12 /40*100	
20		E	4/20*100	10 /20*100	6/20*100	
10		S	2/10*100	5/10*100	3/10*100	
10		0	2/10*100	5/10*100	3/10*100	
80						

Résultat: chaque ligne est identique et le total est de 100%

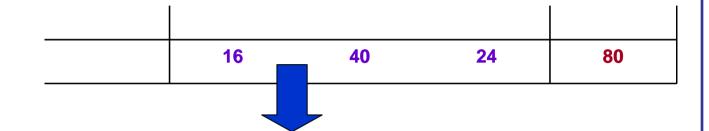
АВ	400-600	600-800	800-1000	
N	20%	50%	30%	100%
E	20%	50%	30%	100%
S	20%	50%	30%	100%
0	20%	50%	30%	100%

Il faut maintenant établir le tableau des profilscolonnes

AB	400-600	600-800	800-1000	
N	8	20	12	40
E	4	10	6	20
S	2	5	3	10
0	2	5	3	10
	16	40	24	80

(2) Cas d'une absence de liaison

Il faut maintenant établir le tableau des profilscolonnes



АВ	400-600	600-800	800-1000	
N	8/16*100	20/ 40 *100	12/ 24*100	
E	4/16*100	10/40*100	6/24*100	
S	2/16*100	5/ 40 * 100	3/24*100	
0	2/16*100	5/ 40 * 100	3/24*100	

(2) Cas d'une absence de liaison

Résultat: chaque colonne est identique et le total est de 100%

AB	400-600	600-800	800-1000	
N	50%	50%	50%	
E	25%	25%	25%	
S	12,5%	12,5%	12,5%	
0	12,5%	12,5%	12,5%	
	100%	100%	100%	

(1) Cas d'une absence de liaison

- Il n'existe aucune liaison entre les 2 variables qualitatives car on obtient un tableau de profil-lignes tel que toutes les lignes sont identiques et le total est égal à 100% ainsi qu'un tableau de profil-colonnes tel que toutes les colonnes sont identiques et le total est égal à 100%
- Ces calculs sont indispensables avant de se lancer dans des calculs plus complexes à réaliser dans le cas général...
- Le calcul de l'un des deux tableaux est suffisant :
 - Si toutes les lignes (ou colonnes) sont identiques et =100%, on conclut qu'il n'y a pas de liaison entre les 2 variables
 - Si ce n'est pas le cas, il faut se lancer dans des calculs plus complexes

Cls : dans notre cas d'études, la <u>pluviométrique</u> annuelle ne dépend pas du tout de l'exposition de la station météorologique

3 cas de figures

(1) Cas d'une liaison parfaite

(2) Cas d'une absence de liaison

(3) Cas ni d'une liaison parfaite ni d'une absence de liaison :

Cas réel

- Dans la réalité, les cas précédents existent rarement
- Pour savoir s'il existe une liaison et si celle-ci est significative,

On utilise le test du Khi-2

DEMARCHE:

ETAPE 0. On pose l'hypothèse H0 d'indépendance entre les variables

ETAPE 1. Calcul d'un tableau théorique

A partir du tableau de contingence (=tableau réel)

- Ce tableau correspond à une indépendance entre les 2 caractères
- Les individus y sont répartis proportionnellement entre chaque modalité

ETAPE 2. Calcul d'un tableau des écarts à l'indépendance

A partir du tableau de contingence et du tableau théorique : Tableau contingence – Tableau théorique

ETAPE 3. Test de significativité de la relation :

Calcul du Khi-Deux (χ^2) réel

Calcul du Khi-Deux (χ^2) théorique

Comparaison entre les 2 valeurs de Khi-Deux (χ^2)

Soit le tableau suivant :

AB	400-600	600-800	800-1000	Total marginal colonne
N	7	10	3	20
E	8	8	3	19
S	6	9	9	24
W	0	5	13	18
Total marginal ligne	21	32	28	81

Le tableau théorique se calcule comme suit :

$$n_{ij} = (n_i * n_j) / n$$

avec: $\begin{cases} \textbf{n}_{ij} : \textit{effectif th\'eorique de la ligne i et de la colonne j} \\ \textbf{n}_i : \textit{effectif marginal de la ligne i} \\ \textbf{n}_j : \textit{effectif marginal de la colonne j} \\ \textbf{n} : \textit{effectif total} \end{cases}$

Exercice: Dresser le tableau théorique correspondant au tableau précédent

Résultat :

AB	400-600	600-800	800-1000	Total marginal colonne
N	(20*21)/81 = 5.2	7.9	6.9	20
E	(19*21)/81 = 4.9	7.5	6.6	19
S	(24*21)/81 = 6.2	9.5	8.3	24
W	(18*21)/81 = 4.7	7.1	6.2	18
Total marginal ligne	21	32	28	81

DEMARCHE:

ETAPE 0. On pose l'hypothèse H0 d'indépendance entre les variables

ETAPE 1. Calcul d'un tableau théorique

A partir du tableau de contingence (=tableau réel)

- Ce tableau correspond à une indépendance entre les 2 caractères
- Les individus y sont répartis proportionnellement entre chaque modalité

ETAPE 2. Calcul d'un tableau des écarts à l'indépendance

A partir du tableau de contingence et du tableau théorique :

Tableau contingence - Tableau théorique

ETAPE 3. Test de significativité de la relation :

Calcul du Khi-Deux (χ²) réel

Calcul du Khi-Deux (χ^2) théorique

Comparaison entre les 2 valeurs de Khi-Deux (χ^2)

Tableau de contingence (=tableau réel)

Tableau théorique

İ	AB	400- 600	600- 800	800- 1000	Total marginal colonne	AB	400- 600	600- 800	800- 1000	Total marginal colonne
	N	(7)	10	3	20	N	(5.2)	7.9	6.9	20
	E	8	8	3	19	E	4.9	7.5	6.6	19
ĺ	S	6	9	9	24	S	6.2	9.5	8.3	24
ĺ	W	0	5	13	18	W	4.7	7.1	6.2	18
	Total margi nal ligne	21	32	28	81	Total margi nal ligne	21	32	28	81

7	-5.2 = 1.8	
8	4.9 = 3.1	

$$6 - 6.2 = -0.2$$

$$0 - 4.7 = -4.7$$

0.7

6.8

Il s'agit du tableau des écarts à l'indépendance

	400-600	600-800	800-1000
N	7 - 5.2 = 1.8	2.1	-3.9
E	8 - 4.9 = 3.1	0.5	-3.6
S	6 - 6.2 = -0.2	-0.5	0.7
O	0 -4.7 = -4.7	-2.1	6.8

Interprétation du tableau des écarts à l'indépendance :

• Valeurs > 0

Effectifs réels > Effectifs théoriques => association positive

Ex: le nombre de stations exposées Ouest appartenant à la classe des forts cumuls est > à celui qu'il devrait être en cas d'indépendance

• Valeurs < 0

Effectifs réels < Effectifs théoriques => association négative

Ex: le nombre de stations exposées Ouest appartenant à la classe des faibles cumuls est < à celui qu'il devrait être en cas d'indépendance

DEMARCHE:

ETAPE 0. On pose l'hypothèse H0 d'indépendance entre les variables

ETAPE 1. Calcul d'un tableau théorique

A partir du tableau de contingence (=tableau réel)

- Ce tableau correspond à une indépendance entre les 2 caractères
- Les individus y sont répartis proportionnellement entre chaque modalité

ETAPE 2. Calcul d'un tableau des écarts à l'indépendance

A partir du tableau de contingence et du tableau théorique : Tableau contingence – Tableau théorique

ETAPE 3. Test de significativité de la relation :

Calcul du Khi-Deux (χ^2) réel

Calcul du Khi-Deux (χ^2) théorique

Comparaison entre les 2 valeurs de Khi-Deux (χ^2)

Pour tester la significativité de la relation entre 2 caractères, on calcule :

• χ^2 du tableau réel = χ^2 réel

Formule:

Tableau des écarts à l'indépendance

$$X^{2} = \sum_{i=1}^{k} \sum_{j=1}^{p} \frac{(n_{ij}obs - n_{ij}th\acute{e}o)^{2}}{n_{ij}th\acute{e}o}$$
Tableau th\acute{e}orique

Tableau des écarts à l'indépendance :

Tableau théorique

1.8	2.1	-3.9
3.1	0.5	-3.6
-0.2	-0.5	0.7
-4.7	-2.1	6.8

_		
5.2	7.9	6.9
4.9	7.5	6.6
6.2	9.5	8.3
4.7	7.1	6.2

$(1.8)^2/5.2=0.62$	0.56	2.2
$(3.1)^2/4.9=1.96$	0.03	1.96
(-0.2)2/6.2=0.06	0.03	0.06
$(-4.7)^2/4.7=4.7$	0.62	7.46

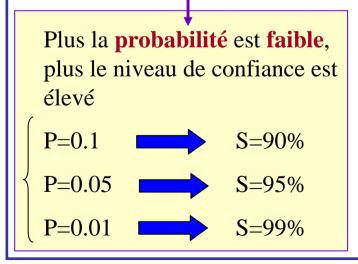
$$\chi^2$$
 _réel = 0.62 + 1.96 + 0.06 + ... + 0.56 + 0.03 + 0.03 + ... + 0.06 + 7.46 = 20.21

Pour tester la significativité de la relation entre 2 caractères, on cherche également :

• χ^2 du tableau théorique : χ^2 théorique

Pour cela, il faut:

- Calculer le nombre de degrés de liberté—
- Fixer le niveau de confiance souhaité



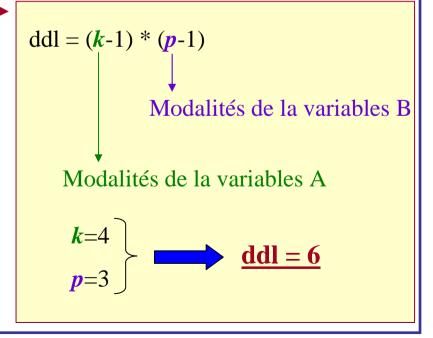
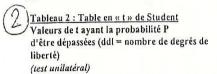


Tableau 1 : Extrait de la table de la loi normale

Probabilité P d'avoir des valeurs comprises entre

(1111)	- Hilliototo		P	(%)		
	68%	90%	95%	98%	99%	99.9%
z	1,0	1,65	1,96	2,33	2,57	3,3



P ddl	0.05	0.01
1	6.314	31.82
2	2.920	6.965
3	2.353	4.541
4	2.132	3.747
5	2.015	3.365
6	1.943	3.143
7	1.895	2.998
8	1.860	2.896
9	1.833	2.821
10	1.812	2.764
11	1.796	2.718
12	1.782	2.681
13	1.771	2.650
14	1.761	2.624
15	1.753	2.602
16	1.746	2.583
17	1.740	2.567
18	1.734	2.552
19	1.729	2.539
20	1.725	2.528
21	1.721	2.518
22	1.717	2.508
23	1.714	2.500
24	1.711	2.492
25	1.708	2.485
26	1.706	2.479
27	1.703	2.473
28	1.701	2.467
29	1.699	2.462
30	1.697	2.457
inf.	1.64	2.326

Tableau 3 : table du r de Bravais-Pearson

Probabilité P pour que le coefficient de corrélation égale ou dépasse, en valeur absolue, une valeur r, en fonction du nombre de degrés de liberté (d.d.l.).

d.d.l.□, P	0,10	0,05	0,01
1	0,9877	0,9969	0,9999
2 0,9000		0,9500	0,9900
3	0,8054	0,8783	0,9587
4	0,7293	0,8114	0,9172
5	0,6694	0,7545	0,8745
6	0,6215	0,7067	0,8343
7	0,5822	0,6664	0,7977
8	0,5494	0,6319	0,7646
9	0,5214	0,6021	0,7348
10	0,4973	0,5760	0,7079
11	0,4762	0,5529	0,6835
12	0,4575	0,5324	0,6614
13	0,4409	0,5139	0,6411
14	0,4259	0,4973	0,6226
15	0,4124	0,4821	0,6055
16	0,4000	0,4683	0,5897
17	0,3887	0,4555	0,5751
18	0,3783	0,4438	0,5614
19	0,3687	0,4329	0,5487
20	0,3598	0,4227	0,5368
25	0,3233	0,3809	0,4869
30	0,2960	0,3494	0,4487
35	0,2746	0,3246	0,4182
40	0,2573	0,3044	0,3932
45	0,2438	0,2875	0,3721
50	0,2306	0,2732	0,3541
60	0,2108	0,2500	0,3248
70	0,1954	0,2319	0,3017
80	0,1829	0,2172	0,2830
90	0,1726	0,2050	0,2673
100	0,1638	0,1946	0,2540

Tableau 4 : Table du Khi2

Valeurs de khi-deux ayant la probabilité P d'être dépassées, en fonction du nombre de degrés de

liberté (d.d.1 d.d.l.\ P 🖵	0,10	0,05	0,01
1	2,706	3,841	16 625
2	4,605	new positivativation distribution	T .
3	6,251	7,8	liveau
4	7,779	9,488	13,277
5	9,236	11.070	15,086
6	10,645	12,592	6,812
7	12,017	14,067	18,475
8	13,362	15,507	20,090
9	14,	T 1	
10	15,	oml	ore de
11	17,215	19,675	124,725
12	18,549	21,026	26,217
13	19,812	22,362	27,688
14	21,064	23,685	29,141
15	22,307	24,996	30,578
16	23,542	26,296	32,000
17	24,769	27,587	33,409
18	25,989	28,869	34,805
19	27,204	30,144	36,191
20	28,412	31,410	37,566
21	29,615	32,671	38,932
22	30,813	33,924	40,289
23	32,007	35,172	41,638
24	33,196	36,415	42,980
25	34,382	37,652	44,314
26	35,563	38,885	45,642
27	36,741	40,113	46,963
28	37,916	41,337	48,278
29	39,087	42,557	49,588
30	40,256	43,773	50,892

Tableau 5 : Table du F de Fisher

P=0.05

			ddl 1	75 202 303 203	
Ddl 2	1	2	3	4	5
1	161.44	199.5	215.7	224.58	230.16
007	efi o r	•			9.29

	1 4	nfiai 1 7.7086]		6.5914	6.3882	9.01 6.2561
	5	6.6079	5.7861	5.4095	5.1922	5.0503
	6	5.9874	5.1433	4.7571	4.5337	4.3874
	7	5.5914	4.7374	4.3468	4.1203	3.9715
	8	5.3177	4.4590	4.0662	3.8379	3.6875
_	· possessimilarion	_		_	.6331	3.4817
de	égré	s de	libe	erté	.4780	3.3258
	U	.,			3567	3.2039

	_			.6331	3.4817
grés	s de	de liberté		.4780	3.3258
			3567	3.2039	
12	4.7472	3.8853	3.4903	3.2592	3.1059
13	4.6672	3.8056	3.4105	3.1791	3.0254
14	4.6001	3.7389	3.3439	3.1122	2.9582
15	4.5431	3.6823	3.2874	3.0556	2.9013
16	4.4940	3.6337	3.2389	3.0069	2.8524
17	4.4513	3.5915	3.1968	2.9647	2.8100
18	4.4139	3.5546	3.1399	2.9277	2.7729
19	4.3807	3.5219	3.1274	2.8951	2.7401
20	4.3512	3.4928	3.0984	2.8661	2.7109
21	4.3248	3.4668	3.0725	2.8401	2.6848
22	4.3009	3.4434	3.0491	2.8167	2.6613
23	4.2793	3.4221	3.0280	2.7955	2.6400
24	4.2597	3.4028	3.0088	2.7763	2.6207
25	4.2417	3.3852	2.9912	2.7587	2.6030
26	4.2252	3.3690	2.9752	2.7426	2.5868
27	4.2100	3.3541	2.9604	2.7278	2.5719
28	4.1960	3.3404	2.9467	2.7141	2.5581
29	4.1830	3.3277	2.9340	2.7014	2.5454
30	4.1709	3.3158	2.9223	2.6896	2.5336
40	4.0847	3.2317	2.8387	2.6060	2.4495
60	4.0012	3.1504	2.7581	2.5252	2.3683
120	3.9201	3.0718	2.6802	2.4472	2.2899
inf	3.8415	2.9957	2.6049	2.3719	2.2141

P=0,05 ddl=6 => χ² théorique =12,592

$$\chi^{2}$$
_réel = 20.21

 χ^2 _théorique = 12.59

Comparaison des deux valeurs pour tester la significativité de la relation statistique

Donc, pour une probabilité de 0,05, <u>et dans ce cas précis, ce serait vérifié quelle que soit la probabilité choisie</u>, nous avons χ^2 _réel > χ^2 _théorique

Interprétation:

• χ^2 _réel > χ^2 _théorique

La liaison statistique entre les 2 variables est **significative** L'hypothèse H0 d'indépendance posée initialement est rejetée.

Les variables sont dépendantes l'une de l'autre.

• χ^2 _réel < χ^2 _théorique

La liaison statistique entre les 2 variables n'est pas significative

L'hypothèse H0 d'indépendance est validée.

Les variables ne sont pas dépendantes l'une de l'autre.

Interprétation

(1) Dans notre cas la cumul annuel de précipitations dépend significativement (à un seuil de 99%) de l'exposition de la station météorologique

AB	400-600	600-800	800-1000
N	1,8	2,1	-3,9
E	3,1	0,5	-3,6
S	-0,2	-0,5	0,7
0	-4,7	-2,1	6,8
	•		

Tableau des écarts à l'indépendance

(2) Association positive entre expositions N et E et faibles précipitations

- (4) Dans la région étudiée les stations exposées à l'O, et dans une moindre mesure au S, sont plus arrosées que celles qui font face au N et à l'E.
- (3) Association négative entre ces mêmes expositions et la classe de précipitations supérieure

