

Figure 2: Image du projet Orion équipé d'une propulsion nucléaire pulsée : source : <u>https://astronomie.skyrock.com/</u>

Groupe projet :

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

<u>Responsable du projet</u> : M. Porcher <u>Président de l'association OCTAVE :</u> M. Ghailan

Figure 1 : Véhicule à quatre fusées d'Armadillo Aerospace : source : <u>https://en.wikipedia.org/</u>

Université d'Evry Val d'Essonne Années 2018-2019

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **1** sur **97**

Sommaire

REMERCIEMENTS	
1. Introduction	5
1.1. Présentation du projet Mini-Apterros	5
1.2. Recherche bibliographique	5
1.3. Objectif du projet	5
2. Retour sur la première partie du projet	6
2.1. Propulsion à hélice simple	9
2.2. Propulsion à hélices contrarotatives	
3. Gestion de projet	
3.1. Diagramme bête à cornes	
3.2. Diagramme Pieuvre	12
3.3. Diagramme Fast	13
3.4. Gestion des risques	
3.4.1. Liste des ressources	
3.4.2. Tableau des risques	15
3.4.3. Diagramme de Pareto	
3.5. Répartition des tâches prévisionnelles	19
3.6. Répartition des tâches réévaluées	20
3.7. Diagramme Gantt prévisionnel	
3.8. Diagramme Gantt réévalué	
4. Etude cinématique des modèles OCTAVE/SATURN	
4.1. Etude cinématique du modèle OCTAVE	
4.1.1. Groupes de pièces	
4.1.2. Graphe des liaisons OCTAVE	
4.1.3. Schéma cinématique OCTAVE	
4.2. Etude cinématique du modèle SATURN	
4.2.1. Groupes de pièces	
4.2.2. Graphe des liaisons SATURN	
4.2.3. Schéma cinématique SATURN	
5. Méthodologie de résolution des modèles mécaniques	
5.1. Schéma simplifié du Mini-Apterros d'OCTAVE et référentiels	
5.2. Schéma simplifié du Mini-Apterros de SATURN et référentiels	
5.3. Matrices de passage	

5.4. Déroulement des calculs	36
5.4.1. Torseur cinématique	36
5.4.2. Torseur cinétique	36
5.4.3. Torseur dynamique	37
5.4.4. Torseurs des actions mécaniques extérieures	37
5.4.5. Principe Fondamental de la Dynamique (PFD)	37
6. Résultats du modèle mécanique d'OCTAVE	38
6.1. Torseur cinématique	38
6.2. Torseur cinétique	38
6.3. Torseur dynamique	39
6.4. Torseurs des actions mécaniques extérieures	39
6.5. Principe Fondamental de la Dynamique	42
7. Résultats de modèle mécanique de SATURN	43
7.1. Torseur cinématique	43
7.2. Torseur cinétique	43
7.3. Torseur dynamique	43
7.4. Torseurs des actions mécaniques extérieures	44
7.5. Principe Fondamental de la Dynamique	46
8. Simplification du modèle mécanique d'OCTAVE	47
8.1. Théorie de simplification	47
8.2. Torseur cinématique	48
8.3. Torseur cinétique	48
8.4. Torseur dynamique	48
8.5. Torseurs des actions mécaniques extérieures	48
8.6. Principe Fondamental de la Dynamique	50
9. Simplification du modèle mécanique de SATURN	50
9.1. Théorie de simplification	50
9.2. Torseur cinématique	51
9.3. Torseur cinétique	51
9.4. Torseur dynamique	51
9.5. Torseurs des actions mécaniques extérieures	51
9.6. Principe Fondamental de la Dynamique	52
10. Comparaison des deux modèles	54
11. Conclusion	55
Table des annexes	56

REMERCIEMENTS

Nous remercions l'ensemble de l'équipe pédagogique de l'université d'Evry Val d'Essonne qui ont su nous guider et nous conseiller sur les différents aspects de notre projet.

Plus particulièrement, nous remercions M. Porcher, professeur et client de notre projet, qui, lors de ce second semestre, a pris de son temps pour nous prodiguer de précieux conseils, ainsi que l'orientation apportée sur notre méthodologie et nos calculs.

Nous remercions également M. Ghailan, président de l'association OCTAVE, qui par son intérêt porté à notre projet, a pris tout au long du semestre le temps de répondre aux questions concernant nos calculs.

Enfin nous remercions Mme. Uhl pour ses conseils prodigués lors de la phase gestion de projet, et le temps pris pour répondre à nos questions.

Groupe Projet n°4

5 sur 97

1. Introduction

1.1. Présentation du projet Mini-Apterros

Le Mini-Apterros (Advanced Propulsion Technology for Reusable Rocket Operating System) est un nanodémonstrateur à propulsion électrique. Ce projet a pour objectif de valider le concept de décollage et d'atterrissage vertical (VTVL) d'une fusée. Il est inscrit dans le cadre du projet PERSEUS (Projet de Recherche Spatiale Européen Universitaire et Scientifique) initié par le CNES (Centre National d'Etudes Spatiales) [1].

Ce projet entre dans le cadre d'un concours terminé depuis juin 2018. Lors de ce concours, des équipes d'universités et d'écoles d'ingénieurs différentes se sont affrontées dont notamment : OCTAVE (Organisation de Création Technologique et Aérospatiale de la Ville d'Evry), SATURN (Université de Rennes), CLC (Central Lyon Cosmos) et s3 (ISAE SupAero).

Le CNES voit, par la réalisation de projets étudiants, l'occasion de préparer et améliorer des solutions techniques innovantes des projets spatiaux à caractère industriel et pédagogique.

Le 16 juin 2018, OCTAVE a présenté le contrôle et la séquence automatique de son démonstrateur, SATURN a présenté le contrôle et la séquence automatique du jet de la tuyère (sortie des gaz) sur son prototype, CLC a dévoilé son prototype en cours de développement et enfin, S3 a détaillé la CAO (Conception Assistée par Ordinateur) de son modèle et le design low-cost.

On rappelle que le Mini-Apterros doit répondre au cahier des charges suivant :

- Être un véhicule VTVL
- Posséder une masse inférieure à 10 kg
- Être motorisé électriquement
- Être équipé d'une puissance électrique maximale de 15 kW

1.2. <u>Recherche bibliographique</u>

Au premier semestre, une recherche bibliographique portant sur les systèmes induisant une propulsion fut réalisée.

L'objectif été de déterminer les avantages et inconvénients de différents systèmes de poussée et de trouver le système le plus adapté au projet Mini-Apterros.

Un rappel du système le plus à même, selon nous, de répondre au cahier des charges est d'ailleurs effectué plus tard dans ce rapport.

1.3. Objectif du projet

En début de second semestre, nous avons d'en un premier temps fait de la gestion de projet, ainsi que l'étude des modèles 3D d'OCTAVE et de SATURN pour voir comment ceux-ci fonctionnent mécaniquement parlant.

Dans un second temps, le projet pris comme orientation la compréhension du modèle mécanique d'OCTAVE fait préalablement par nos prédécesseurs, ainsi que l'étude du modèle mécanique de SATURN. Une fois cela effectué, une comparaison de ces deux systèmes a été effectuée, pour, comme objectif final, d'adapter le modèle mécanique d'OCTAVE à la structure de SATURN, c'est-à-dire, qu'une même loi de commande doit être utilisable sur le mini-Apterros d'OCTAVE, comme celui de SATURN Le présent document, constitue une présentation de l'ensemble des étapes et de la méthodologie qui nous ont permis de trouver les modèles mécaniques, ainsi que de comparer ceux-ci.

M. Alemany, M. Awenenty		
Mme Bérezné, M. Trouvé	Années 2018 - 2019	Page

2. Retour sur la première partie du projet

En première partie de ce projet, des recherches sur les différents types de propulsion ont été menées afin de de confirmer ou d'infirmer le choix que l'association OCTAVE avait adopté pour leur Mini-Apterros.

Présenté ci-après, le tableau récapitulatif des différents types de propulsion étudiés.

Systèmes	Avantages	Inconvénients	Applications	
Hydrojet	 Aucun organe extérieur Rendement supérieur à une hélice Marche avant/arrière rapide 	 Complexe et coûteux Besoin d'un système de protection 	- Navire - Scooter des mers	
Hydro Flighting	Flighting - Permet de s'élever dans les airs au-dessus du niveau de l'eau - Nécessite un scooter des mers pour fonctionner - N'est utilisable que dans l'eau		- Divertissement civil	
Propulsion hydraulique hybride Domaine Maritime	 Pas de boîte de vitesse Réduction des coûts de maintenance Poids Augmentation de la consommation en carburant Perte d'efficacité du système 		- Domaine maritime	
Propulsion hydraulique hybride Domaine Terrestre	 - 60% d'économie en carburant - 40% émissions de CO2 en moins - Technologie puissante et efficace 	 Faible rendement Perte d'énergie sur longues distances 	- Véhicules de manutention - Automobiles	
Propulsion liquide	 Peut être allumé et éteint plusieurs fois 	 Réservoirs de carburants volumineux 	- Fusées	
Propulsion solide	 Emplacement réduit pour les propergols Génère une poussée importante 	- Impossible à éteindre une fois lancer	- Booster de fusées - Missiles	
Propulsion nucléaire à cœur solide	- Un seul circuit - Meilleur impulsion possible - Considéré comme plus intéressant qu'un propulseur chimique	 Non utilisable dans l'atmosphère Gaz éjecté radioactif Vaisseau très lourd (blindage) L'arrêt du réacteur ne se fait pas en un coup Limite thermique du moteur 	- Utilisé pour le projet NERVA (projet de la NASA)	

Propulsion nucléaire à cœur liquide (complexe)	- Impulsion spécifique plutôt élevé	npulsion spécifique plutôt - Complexité de mise en vé œuvre	
Propulsion nucléaire à cœur liquide (simple)	- Mise en œuvre plus simple que le premier moteur nucléaire à cœur liquide - Impulsion spécifique élevée	 Pas de refroidissement du système Très grande quantité de matière radioactive éjectée 	
Propulsion par fragment de fission	 Très grande densité d'énergie fournit par rapport à un propulseur chimique Impulsion spécifique 	 Très grande quantité de produits radioactifs éjectés Certains composants de la fission ne peuvent pas être éjectés du moteur 	- Réacteur de fusée hors atmosphère
Poussée électrostatique	- Allégement de la structure	- Faible force de poussée (0,05 à 0,5 N). - Utilisable que dans le vide dû à la force de poussée	- Mise en orbite de satellites et maintien orbitale
Poussée électrothermique	- Simplicité de mise en œuvre - Structure allégée par rapport à un moteur chimique	 Faible force de poussée par rapport aux propulseurs chimiques 	- Réorientation des satellites
Propulsion à plasma pulsé	 Moteur robuste Conception simple Consommation de carburant faible comparé aux propulseurs chimiques 	- Rendement de propulsion plus faible que pour les autres formes de propulseurs électriques	 Contrôle en altitude de petits vaisseaux spatiaux Maintient orbitale
Propulsion à force MPDT	 Forte force de poussée et forte impulsion spécifique comparé aux autres systèmes de poussée électrique 	- Érosion importante des électrodes - Demande en puissance électrique trop élevée	- Pour des moteurs de vaisseaux spatiaux dans l'avenir
Propulsion à force pondéromotrice	 Forte force de poussée par rapport aux autres systèmes électriques 	 Force de poussée pas assez importante pour que ce système soit utilisé autre part que dans le vide. 	 Maintient orbitale de grands satellites ou de stations orbitales
Moteur EM Drive	- Très innovant - Peu polluant	 Pas encore compris par les spécialistes Donne des résultats inexpliqués 	
Turbines à vapeur	- Large choix de combustibles - Chaleur résiduelle peut être utile pour d'autres activités	- Installations coûteuses et complexes	- Locomotives à vapeur - Propulsion navale (avant 1980) - Porte-avions

		 Système de refroidissement important nécessaire Très bruyant 	- Navires d'assaut amphibies
Turbines à gaz	- Systèmes légers	 Forte pollution si gaz non naturels 	- Motorisations actuelles
Flyboard Air	 Permet de créer une poussée puissante et orientable 	 Nécessite des réacteurs d'engins militaires qu'on peut difficilement se procurer Système complexe Coût élevé de réalisation 	- Divertissement civil
Turboréacteur	- Permet de créer une poussée propulsive	 Fonctionne à des températures très élevées Besoin en matériaux très résistants Pollution sonore et atmosphérique 	- Aviation militaire ou civile
Turbopropulseur	 Permet de générer une poussée Consomme moins de carburant que le turboréacteur 	 Fonctionne à des températures très élevées Besoin en matériaux très résistants Pollution sonore et atmosphérique 	- Aviation militaire ou civile - Aviation - Drone
Propulsion à hélice simple	Propulsion mécanique éprouvée	-Efficacité dégradé lorsque vitesse sur pales approche vitesse du son - Vitesse subsonique	
Propulsion à hélice contrarotative	Rendement moteur supérieur à celui de l'hélice simple Moment roulis et lacet atténués	-Complexité mécanique - Bruyant - Vitesse subsonique	- Aviation - Drone

A la suite de ces recherches, nous avons pu conclure sur les points suivants :

- Chimique : Ne peut pas être utilisé dans le projet car n'est pas motorisé électriquement.
- Électrique : Faible force de poussée, n'est utilisable que dans le vide (l'espace) ; Coûteux.
- Hydraulique hybride : Faible rendement ; Ajout d'une pompe, plus d'un moteur hydraulique, non pertinent dans notre cas dû à la masse du système limitée.
- Hydrojet : Lié au domaine naval, n'est donc pas adapté pour notre projet.
- Turbomachine : Fonctionne à des températures très élevées ; Matériaux composant les réacteurs doivent-êtres très résistants ; Coûteux.

Cependant, nos recherches ont fait ressortir un système qui, lui, est conforme au cahier des charges et conforme au budget du projet.

M. Alemany, M. Awenenty	
Mme Bérezné, M. Trouvé	Années 2018 - 2019

Ce système de propulsion est le système à hélice. Effectivement ce système peu onéreux (utilisation d'hélice en bois), peut-être couplé à un moteur électrique et donc fonctionné via des batteries d'une puissance de 15kW ou moins.

D'ailleurs, l'équipe travaillant sur le projet Mini-Apterros l'an passé avait sélectionné comme moyen de propulsion une hélice contrarotative. La partie suivante rappel seulement les détails sur la propulsion à hélices.

2.1. Propulsion à hélice simple

L'hélice fut le premier système de propulsion mécanique en aviation. Aujourd'hui, elle est encore très utilisée pour les avions qui ne nécessitent pas de grandes vitesses.

Ce type de propulsion peut être produit par moteur thermique ou électrique.

Le rôle du système à hélice est de transformer une énergie mécanique de rotation en une énergie aérodynamique de traction (en prenant appui sur l'air).

Le profil d'une pale d'hélice est similaire à un profil d'une aile d'avion, c'est à dire qu'elle est dotée d'un bord d'attaque, d'un bord de fuite, d'une corde de référence, d'une épaisseur moyenne, d'une cambrure, etc.

Figure 3: Schéma du profile d'une pale : Source : L'avionneur

Cependant, contrairement à une aile d'avion, la vitesse relative du flux d'aire n'est pas constante sur toute la longueur de la pale. Effectivement, celle-ci est nulle au niveau du moyeu et augmente en s'éloignant de l'axe du disque rotor, elle devient maximale en bout de pale.

Le vrillage de la pale d'hélice permet un équilibrage des forces sur toute la longueur de la pale, c'est à dire que l'augmentation de vitesse en bout de pale est compensée par la diminution de l'angle de calage. De ce fait, l'angle d'incidence évoluent le long de la pale pour s'adapter aux différentes vitesses de celle-ci. Cet angle est donc variable est décroissant vers le bout de pale.

Dans les premières années de l'aviation motorisée, deux conceptions d'avion ont cohabité. Une propulsion dite "tractive", placé à l'avant de l'avion qui "tire" celui-ci, ainsi qu'une propulsion dite "propulsive", placé à l'arrière de l'avion qui "pousse" celui-ci.

2.2. Propulsion à hélices contrarotatives

Certains avions sont équipés d'une paire d'hélices contrarotatives montées sur le même arbre. Les hélices contrarotatives sont deux hélices coaxiales montées l'une derrière l'autre, celles-ci sont entraînées par le même moteur, ou par deux moteurs différents, l'une tourne à droite tandis que l'autre tourne dans le sens contraire, ici à gauche.

Dans une configuration à hélice simple, les pales tournantes créés une quantité importante de flux d'air rotationnel. Comme le schéma ci-après le montre, le flux d'air non récupéré provoque un écoulement qui s'enroule autour du fuselage. En résulte une augmentation de la pression sur certaines surfaces du fuselage.

Figure 5: Effet souffle hélicoïdale : Source : <u>www.avialogs.com</u>

Figure 4: Effet gyroscopiques : Source : <u>www.lavionnaire.fr</u>

Il existe trois moments influents les mouvements de rotations de l'appareil :

- Moment de roulis : il est dû à deux éléments, le couple moteur et à l'effet de souffle hélicoïdale.
- Moment de lacet : il est dû à deux éléments, lors d'un virage et à l'effet de souffle hélicoïdale.
- Moment de tangage : il est dû aux perturbations des flux d'air verticaux par rapport au sol (trou d'air), d'où les turbulences.

Une configuration à hélice contrarotative, atténue grandement le moment de roulis et le moment de lacet. Cela s'explique par deux hélices consécutives, celles-ci tournant dans le sens opposé l'une à l'autre. Cela permet de récupérer le flux d'air perturbé provenant de la première hélice à des fins d'augmentation du rendement (poussée moteur fournit / la poussée générée), de compensation du moment roulis et du moment de lacet.

Figure 6: Annulation souffle hélicoïdale : Source : <u>www.avialogs.com</u>

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 10 sur 97

Si une hélice contrarotative est bien conçue, elle n'aura pas d'écoulement d'air en rotation, poussant une quantité maximale d'air uniformément à travers le disque de l'hélice. Cela entraînera des performances élevées et une faible perte d'énergie induite.

Avantages :

- Rendement moteur supérieur à celui de l'hélice dit "simple", de l'ordre de 95% ou plus.
- Moment de roulis et lacet pratiquement annulés par la propulsion contre-rotationnelle.
- A puissance égale, diamètre d'hélice plus faible.

Inconvénients :

- Complexité mécanique plus grande.
- Plus bruyant qu'un système classique à hélice.
- Vitesse subsonique

Exemple d'application :

- Aviation
- Drone

3. <u>Gestion de projet</u>

3.1. Diagramme bête à cornes

Dans quel but ?

Figure 7 : Diagramme bête à cornes

Figure 8 : Diagramme pieuvre

Fonctions	Descriptions
FP1	Comparer les modèles mécanique OCTAVE et SATURN
FP2	Etudier le modèle mécanique d'OCTAVE via, étude cinématique, dynamique et cinétique
FP3	Etudier le modèle mécanique de SATURN via, étude cinématique, dynamique et cinétique
FC1 : Méthodologie	Avoir une méthodologie de calcul claire et précise compréhensible par tous
FC2 : Encombrement	Etre achevé avant le 20 Mai 2019
FC3 : Loi de commande	Rendre possible l'utilisation d'une même loi de commande pour les deux prototypes du Mini-Apterros OCTAVE et SATURN

Figure 9 : Descriptif des fonctions principales et de contraintes du diagramme pieuvre

3.4. Gestion des risques

3.4.1. Liste des ressources

Ressources :			Difficulté d'obtention/utilisation (*/**/***)
Informatiques :	Logiciels :	CAO Catia V5 R21	***
		SolidWorks	*
		Word	*
		Excel	*
		Reader PDF	*
		Microsoft Project	***
		Matlab	***
	Internet		*
	Cloud		*
Humaines :	Membres du groupe :	Pauline	*
		Cédric	*
		Julien	*
		Samuel	*
	Consultants / experts :	M. Porcher	***
		Mme. Renault	***
		M. Ghailan	**
Matériels :	Poste de travail :	Fourni par l'université	*
		Personnel	**
	Salles OCTAVE :	Acces prototype Mini-Apterros	***
	Modèl 3D :	OCTAVE	***
		SATURN	***
Compétences :		Modélisation	***
		Vibration	***
		Conception	*
		Gestion de projet	*
		Management de projet	*

Figure 11 : Tableau listant les ressources disponible pour le projet

3.4.2. Tableau des risques

Catégorie	Liste des risques	Gravité (1-10)	Occurence (1-10)	Criticité (%)	Prévention	Réparation	Responsable
	Retards	2	2	4	Ne pas veiller trop tard / activer le reveil	Récupération des heures non travaillés	Retardataire / Manager d'équipe
	Absences	2	1	2		Récupération des heures non travaillés	Absent / Manager d'équipe
	Désaccord des membres de l'équipe	4	8	32	Réunion d'état d'avancement régulière	Réunion d'éclaircissement du désaccord	Manager d'équipe
Mangement	Démotivations d'un / des membre(s) équipe projet	4	1	4	Faire des points avec les membres de l'équipe pour savoir quand survient la démotivatione et y remédier	Valorisation du travail effectué par les membres	Manager d'équipe
Ressources Humaines	Incapacité de faire en sorte que toutes les parties partagent la même compréhension de l'objectif	8	1	8	Besoin d'un plan clair et précis avec des livrables bien définis		Manager d'équipe
	Délais du travail par rapport au Gantt (délayant le rendu du livrable)	8	2	16	Réunion hebdomadaire pour suivie projet Demande aide si nécessaire pour réalisation de la tâche	Finir le travail dès que possible Commencement des tâches non critiques Annonce du délais au client	Membre d'équipe
	Abandon de la formation d'un membre de l'équipe	10	1	10			Membres équipe
	Difficulté de présence du client pour réunion Jalon	8	1	8	Définir en amont les dates des jalons Prévenir client de la date des jalons	Report de la réunion	Manager d'équipe
	Logiciel Pack Office	2	1	2		Utilisation logiciels gratuits	Manager d'équipe
	Logiciel CATIA V5R19	8	1	8		Savoir les heures d'ouvertures de l'association PERSEUS pour avoir accès aux PC	Manager d'équipe
	Logiciel MATLAB	1	5	5		Télécharger la version de démo Utilisation d'un logiciels gratuits	Manager d'équipe
	Internet	6	5	30	Vérifier connexion réseau/payer abonnement	Changement équipement	Service informatique / université
Ressources Informatiques	Accessibilité du Mini-Apterros	2	3	6	S'informer des heures d'ouverture du local OCTAVE		Manager d'équipe
et Matérièls	Accessibilité aux salles informatiques	8	4	32	Prévoir au moins 1 ordinateur personnel/personnel ouvrant les salles aux heures prévues	Télé-travail / trouver un personnel annexe pour ouvrir	membres du groupe / personnel universitaire
	Poste de travail indisponible ou fonctionne mal	4	6	24	Maintenance régulière des différents poste	Changement de poste ou appel d'un informaticien	Service informatique
	Server cloud fonctionnel (accesibilité et organisation)	9	1	9	Création de dossier et sous dossier en accord avec les documents enregistrés	Réorganisation des dossiers et documents Back-up sur clé USB	Membres équipe / Manager d'équipe
	Modèle 3D Mini-Apterros d'OCTAVE et SATURN non ouvrable	9	4	36	Demander les 3D modèles au responsable projet	S'informer si autre modèle type stp sont accesible	Membres équipe / Manager d'équipe

Figure 12 : 1ère partie du tableau des risques

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Page **15** sur **97**

Catégorie	Liste des risques	Gravité (1-10)	Occurence (1-10)	Criticité (%)	Prévention	Réparation	Responsable
	Gestion de projet	8	3	24	Apprendre les connaissances manquantes via cours	Conseil à demander auprès de Mme Uhl	Responsable gestion de projet
	Management du projet	5	5	25	Se renseigner sur la façons de manager un projet Réunion hebdomadaire d'avancement projet et pour leurs état d'esprit	Rectifier les erreurs faites Appprendre de ces erreurs	Manager d'équipe
	Incompréhension du modèle mécanique OCTAVE Résultant, non possibilité de trouver celui de SATURN	10	2	20	Apprendre les connaissances manquantes	Après lecture rapport OCAVE, s'informer des connaissances à connaitre et les apprendres Consulter un expert pour expications des calculs	Membres d'équipe / Manager d'équipe
	Impossibilité de trouver les modèles mécaniques de SATURN	10	2	20	Apprendre les connaissances manquantes	Consulter un expert pour méthodologies des calculs	Membres d'équipe / Manager d'équipe
Compétences	Erreur de calcul dans la modelisation des modèles mécanique	10	4	40	Apprendre les connaissances manquantes	Verfification des autres membres de l'équipe Prendre du recul Consulter un expert pour verification des calculs	Membres d'équipe / Manager d'équipe
	Manque d'expertise à l'étape initiale du projet (conception, modélisation, mécaniques)	10	1	10	Chaque membre de l'équipe projet doit apprendre les connaissances manquantes et les exercés Le membre de l'équipe ayant le plus d'habitlité dans un domaine ce doit d'expliquer aux autres et agir comme	Apprendre connaissances manquantes	Membres d'équipe / Manager d'équipe
	Impossibilité d'appréhension des connaissances nécessaires à la réalisation du projet	9	2	18	Lors du Gantt prévoir un temps nécessaire à l'intrégration et compréhension de ces connaissances		Membres d'équipe / Manager d'équipe
	Définition du besoin client	10	1	10	Rencontre avec client en amont du projet, signature d'un Procès Verbal par client et membre de l'équipe projet		Manager d'équipe / client
	Repartition charge de travail	9	2	18	Réalisation d'un diagrame Gantt Répartition équitable de la charge de travail	Revoir la répartition des tâches	Manager d'équipe
Gestion projet	Estimation planning du projet (pas réaliste)	8	1	8	Création d'une time line compréhenbsible, ajout review meeting pour savoir ce qui est fait et reste à faire		Manager d'équipe
	Mauvaise qualité du pilotage du projet	5	5	25	Réunion hebdomadaire pour suivie projet	Réunion pour parler des difficultées Changement méthode de management	Manager d'équipe
	Manque de support des supérieurs	1	1	1	Rester en communication constante avec ceux-ci pour leur faire par des besoins de	Prendre conntact pour exposer le problème	Manager équipe / Responsable universitaire du projet
	Livrable fini et envoyé en date	10	1	10	Finir le travail à la date indiqué par Gantt Mettre rappel pour envoi du livrable au	Contacter le client pour lui annoncer le délai Envoi du livrable dès que possible	Manager d'équipe
	Resultats ne sont pas ceux attendus par le client	10	1	10	Communication régulière avec le client	Refaire travail	Membres d'équipe / Manager d'équipe

Figure 13 : 2ème partie du tableau des risques

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **16** sur **97**

Légende du tableau des risques :

Gravité (gravité du risque)	Impossible	0		Occurrence	Jamais	0
	Insignifiant	1-2			Rare	1-2
	Peu grave	3-4			Occasionnel	3-4
	Grave	5-6			Fréquent	5-6
	Sérieux	7-8			Probable	7-8
	Très grave	9-10			Quasi-Certain	9-10

Figure 14 : Légende du tableau des risques

3.5. <u>Répartition des tâches prévisionnelles</u>

Fonctions	Pauline	Cédric	Julien	Samuel	temps (h)/pers	Chef de tâche
Réunion avec M. Ghailan		X		X	2	Cédric
Outils de gestion de proiet (lundi 28 janvier) :					_	
Tableau répartition des tâches				x	6	Samuel
Diagramme de Gantt				X	6	Samuel
Diagramme Bête à cornes	х				1	Pauline
Diagramme Pieuvre	X				3	Pauline
Diagramme Fast			х		4	Julien
Outils de gestion de risques (mercredi 30 janvier) :					-	
Liste des ressources		х			1	Cédric
Tableau des risques		х			7	Cédric
Diagramme Paretto				х	1	Samuel
1er jalon : Définition précise du besoin (jeudi 31 janvier) + notes pour PV	х	х	Х	х	1	
Rédaction PV + envoie pour acceptation + signature		х			2	Cédric
Etude de l'existant partie OCTAVE :						
Etude du 3D OCTAVE				х	4	Samuel
Etude cinématique du 3D OCTAVE				х	4	Samuel
Compte rendu d'études 3D OCTAVE				х	4	Samuel
Etude du modèle mécanique OCTAVE (début 28/01 :						
Etude globale	х		х		4	Julien
Etude approfondie (calculs revérifiés)	х		х		16	Pauline
Compte rendu d'études modèle mécanique OCTAVE	х		х		4	Julien
Etude de l'existant partie SATURN :						
Etude du 3D SATURN		x			4	Cédric
Etude cinématique du 3D SATURN		х			4	Cédric
Compte rendu d'études 3D SATURN		х			4	Cédric
Réunion interne groupe + compte-rendu	х	х	х	х	1	
2ème Jalon : vérification des résultats	х	х	х	х	1	
Rédaction compte-rendu + envoie		х			1	Cédric
Modifications eventuelles :						
Modification sur les outils de projet				х	1	Samuel
Modification sur l'Etude de l'existant partie OCTAVE				Х	2	Samuel
Modification sur l'Etude de l'existant partie SATURN		Х			2	Cédric
Modification sur l'Etude du modèle mécanique OCATVE	Х		Х		3	Pauline
Réunion vérification modifs + compte-rendu	х	х	Х	х	1	
Etablissement du modèle mécanique de SATURN :						
Réalisation des calculs théoriques		X		X	16	Samuel
Vérification sur MatLab				X	3	Samuel
Compte rendu d'études modèle mécanique SATURN		x		x	3	Samuel
Commencement rapport :					-	
Intro + outils gestion de projet (bete a corne, pieuvre, gantt, Fast, etc)	X		X	v	3	Cedric
Partie OCIAVE (3D + partie meca)	X	v	X	X	6	Pauline
Partie SATURN (3D)	v	X	v	v	3	Cedric
22mm Jelen suścification du modèle mére CATURA	X	×	×	×	1	
Pédagtion compte rendu Lenvoie	^	×	~	^	1	Códric
Modifications eventuelles :		^			-	ceunc
Modifications modèle mécanique SATURN		x		x	2	Samuel
Réunion interne groupe + compte-rendu	x	x	x	x	1	Juniaer
Comparaison des modèles effectués OCTAVE-SATURN	x	~	x	~	12	Julien
Compte-rendu de la comparaison	x		x		3	Julien
Continuation rannort :	^		~		5	Junen
Outils gestion de projet (mise à jour)		x		x	4	Cédric
Partie SATURN (partie méca)		X		X	4	Samuel
Réunion interne groupe + compte-rendu	х	X	х	X	1	Januer
4ème Jalon : vérification de la comparaison effectuée	х	х	х	х	1	
Rédaction compte-rendu + envoie		х			1	Cédric
Modifications eventuelles :	х			х		
Modifications de la comparaison		х	х		2	Julien
Réunion interne groupe + compte-rendu	х	х	х	х	1	
Continuation rapport :						
Outils gestion de projet (mise à jour)		х		х	4	Cédric
Partie comparaison OCTAVE-SATURN (partie méca)	х		х		3	Julien
Conclusion	х		х		2	Pauline
Mise en page		х		х	2	Samuel
Réunion interne groupe + compte-rendu	х	х	х	х	1	
Modifications éventuelles :						
Modifications du rapport		х		х	3	Cédric
5ème Jalon : vérification rapport + vérifier les points PV	х	х	х	х	1	
Rédaction compte-rendu + envoie		х			1	Cédric
Modifications éventuelles :						
Modifications du rapport		х		х	2	Samuel
Réunion relecture rapport	х	X	х	X	3	
Envoie rapport final		X	<u> </u>	X	1	Cédric
PowerPoint	X	X	X	X	6	Cédric
Test PowerPoint		X		X	2	Cedric
Iest PowerPoint	X	X	X	X	2	Cedric
Medifications éventuelles :	X	X	X	X	1	
Modifications du RowerPoint	v	v	v	v	1	Cádric
Soutenance (15/04 à vérifier)	v v	× v	× v	× v	1	ceanc
sourceance (15) 04 a vermen	^		<u> </u>		<u> </u>	

Figure 16 : Tableau de répartition des tâches prévisionnelles

3.6. <u>Répartition des tâches réévaluées</u>

Fonctions	Pauline	Cédric	Julien	Samuel	temps (h)/pers	Chef de tâche
Réunion avec M. Ghailan		х		х	2	Cédric
Outils de gestion de projet (lundi 28 janvier) :						
Tableau répartition des tâches				х	6	Samuel
Diagramme de Gantt				х	6	Samuel
Diagramme Bête à cornes	X				1	Pauline
Diagramme Pieuvre	х		~		3	Pauline
Diagramme Fast			X		4	Julien
Liste des ressources		¥			2	Cédric
Tableau des risques		x			7	Cédric
Diagramme Paretto		x			, 1	Cédric
1er jalon : Définition précise du besoin (jeudi 31 janvier) + notes pour PV	х	x	х	х	0,5	
Rédaction PV + envoie pour acceptation + signature		x			2	Cédric
Etude de l'existant partie OCTAVE :						
Etude du 3D OCTAVE				х	4	Samuel
Etude cinématique du 3D OCTAVE				х	4	Samuel
Compte rendu d'études 3D OCTAVE				х	4	Samuel
Etude de l'existant partie SATURN :						
Etude du 3D SATURN	ļ	х			4	Cédric
Etude cinématique du 3D SATURN		X			4	Cédric
Compte rendu d'études 3D SATURN		X			4	Cédric
Etude du modèle mécanique OCTAVE						lul ¹ ····
Etudo approfondio (coloulo rovérifiéo)	X		X		4	Julien
Compte rendu d'études modèle mécanique OCTAVE	×		×		59	Pauline
Etablissement du modèle mécanique de SATURN -					4	Julien
Réalisation des calculs théoriques		x		x	35	Samuel
Réunion interne groupe + compte-rendu	х	x	х	x	1	Cannaci
2ème Jalon : vérification des résultats (Mercredi 20 Mars)	x	x	X	x	0,5	
Etude du modèle mécanique OCTAVE :						
Etude approfondie (calculs revérifiés)	х		х		42	Pauline
Etablissement du modèle mécanique de SATURN :						
Réalisation des calculs théoriques		х		х	47	Samuel
Réunion interne groupe + compte-rendu	х	х	х	х	1	
3ème Jalon : vérification du modèle méca SATURN (Mercredi 17 Avril)	х	х	х	х	0,5	
Etude du modèle mécanique OCTAVE :					4-	
Etude approtondie (calculs revéritiés)	X		X		10	Pauline
Etablissement au modele mecanique de SATURN :		v		v	20	Consul
Réalisation des calculs théoriques		X		×	20 6	Samuel
Compte rendu d'études modèle mécanique SATURN		×		^	8	Cédric
Expliquation du modèle mécanique de SATURN	х	x	x	x	4	Samuel
Etude du modèle mécanique OCTAVE :	~		~	~	-	Canaci
Etude approfondie (calculs revérifiés)	х		х		8	Pauline
Harmonisation des modèles mécaniques OCTAVE-SATURN	х		х	х	4	Samuel
Etude du modèle mécanique OCTAVE :						
Compte rendu d'études modèle mécanique OCTAVE	х		х		4	Julien
Etablissement du modèle mécanique de SATURN :						
Compte rendu d'études modèle mécanique SATURN	х		х		4	Samuel
Comparaison des modèles OCTOAVE-SATURN						
Comparaison des modèles mécaniques OCTAVE-SATURN	х		X		4	Julien
Comparaison des modèles mécaniques OCTAVE-SATURN			X		2	Julien
Compte-rendu de la comparaison			X		2	Julien
kapport :		v	~		2	Cádria
Partie Méthodologie		X	X	v	12	Samuel
Conclusion		×		^	22	Cédric
Outils gestion de projet (mise à jour tableau tâches et GANTT Pieuvre Fast)		x			6	Cédric
Mise en page		x	x		3	Cédric
Mise en page				х	5	Samuel
PowerPoint :						
Mise en page		х			5	Cédric
Réunion interne groupe + compte-rendu	Х	Х	Х	X	2	
Modifications éventuelles :						
Modifications du rapport		х		х	4	Samuel
PowerPoint		x		х	2	Cédric
Envoi du rapport final :					_	
Envoi du rapport au Client		Х			0,5	Cédric
Temps totaux	156,5	170	165,5	170,5		

Figure 17 : Tableau de répartition des tâches réévaluées

3.7. Diagramme Gantt prévisionnel

				JAN\	/IER									FÉ	VRIE	R																r	VARS	5									
		4			с.,	5				6					7					8							10										1	.1					
		23		2	8		31		4		6	5		11		13		1	18	Τ	20		4	1		6		7			8	T	11		12		1	.3	Γ	14		15	5
		М		L	-		J		L	1	N	Λ		L		Μ			L		Μ		I	_	1	Μ		J			V		L		М		1	VI.		J		V	1
	1	2 3	4	1 2	3 4	1	2 3	4 1	2 3	4	1 2	3 4	1 2	3	4 1	2 3	4	1 2	3	4 1	2 3	3 4	1 2	3 4	4 1	2 3	4	12	3 4	1 2	3	4 1	2 3	4 1	1 2 3	3 4	1 2	3 4	41	2 3	4	12	3 4
Fonctions						i				11																			11					11		11			11		11		
Réunion avec M. Ghailan		CS				!																					\Box					T				\Box			Π	Τ.			
Outils de gestion de projet (lundi 28 janvier) :																				\Box							\Box					T		Π					\square	Τ.	\square	T	
Tableau répartition des tâches				S				9	5																											П			\square				
Diagramme de Gantt											S																					T		\square		\square			\square	Τ.		T	
Diagramme Bête à cornes			F	>																												T		Π		\square			\square	Τ.		T	
Diagramme Pieuvre					Р																											Т		Π					\square	Τ'		T	
Diagramme Fast						1			J	i															1							T				\square			Π	Τ.		T	
Outils de gestion de risques (mercredi 30 janvier) :																				Π												T		Π					Π	Τ.	Π	T	
Liste des ressources				С											1					T												T		Π		\square			\square	Τ.			
Tableau des risques					С					(С									1					1							\square				\Box			\square				
Diagramme Paretto												С					Π														Π			\square	\square	ΤŤ			\square	Т	\square	\square	
1er jalon : Définition précise du besoin (jeudi 31 janvier) + notes pour PV		Τ				G	\top	Ī									T					T						\uparrow			\square	\square	T	\square	\square	\square			\square	T	\square	\square	T
Rédaction PV + envoie pour acceptation + signature								(2													Π									Π	\square	T	Π	\square				\Box			T	
Etude de l'existant partie OCTAVE :																																				\square			\square				
Etude du 3D OCTAVE														S																									\mathbf{T}				
Etude cinématique du 3D OCTAVE										1 i						S									1											\square			\mathbf{T}				
Compte rendu d'études 3D OCTAVE						1												5	S															Π		\top			\mathbf{T}				
Etude du modèle mécanique OCTAVE (début 28/01 :						l I																			1											\square	-	H	\mathbf{T}		\square		
Etude globale				J					Р	Ţ.										1					1											\square			\mathbf{T}				
Etude approfondie (calculs revérifiés)						!					_				JP			_									L)							\Box		\square			İΤ		\square		
Compte rendu d'études modèle mécanique OCTAVE																					JP															\square			\mathbf{T}				
Etude de l'existant partie SATURN :																																							\mathbf{T}				
Etude du 3D SATURN														С																						\square			\mathbf{T}		П		
Etude cinématique du 3D SATURN														П		С																					-	H	\square				
Compte rendu d'études 3D SATURN																		(С						1											\square			\mathbf{T}				
Réunion interne groupe + compte-rendu																						G					L (Π		\square			\mathbf{T}		\square		
2ème Jalon : vérification des résultats						i				1 i					1					1					1		G	;	1					Π					\mathbf{T}		\Box		
Rédaction compte-rendu + envoie						į –				T İ										1					1			С								\square			\mathbf{T}				
Modifications eventuelles :																											T (\Box		T			\square		\square		
Modification sur les outils de projet																												S								\square			\mathbf{T}				
Modification sur l'Etude de l'existant partie OCTAVE																														S									\mathbf{T}				
Modification sur l'Etude de l'existant partie SATURN																														С									\mathbf{T}				
Modification sur l'Etude du modèle mécanique OCATVE																																	JP			+	-	H	\square				
Réunion vérification modifs + compte-rendu																																	Т	G			-	H	\square		H		
Etablissement du modèle mécanique de SATURN :						1														11					1											\top			\square				
Réalisation des calculs théoriques						Ì																			CS									CS			-	H	\mathbf{T}		\square		
Vérification sur MatLab						i T									1										1								Т				-	H		s		S	
Compte rendu d'études modèle mécanique SATURN						!														11					1		L.							Π			CS		1			T	
Commencement rapport :		\top	h				\top							TT			T	\top	ΤŤ			Ħ				JP	JP	\square			T	$\uparrow \uparrow$		\square	\square		T		\mathbf{T}		\square	$\uparrow\uparrow$	1
Intro + outils gestion de projet (bête à corne, pieuvre, gantt. Fast. etc)			h				\top							TT				\top	ΤŤ		S _	T						\square			T	$\uparrow \uparrow$			\square	11		H	$\uparrow \uparrow$		\square	$\uparrow\uparrow$	
Partie OCTAVE (3D + partie méca)		\top	H	\top			+			11	\top		H	TT			11		Ħ					JP				\dagger			++	$\uparrow \uparrow$	\square	\square	++	+	1	Ħ	+	+	\square	++	+
Partie SATURN (3D)			h				\top							TT			T	\top	ΤŤ		С_	П						\square			T	$\uparrow \uparrow$			\square			H	$\uparrow \uparrow$		\square	$\uparrow\uparrow$	1
Réunion interne groupe + compte-rendu			h				\top							TT			T	\top	ΤŤ			T					H	\square			T	$\uparrow \uparrow$			\square			G			\square	$\uparrow\uparrow$	1
																		_		-	-			_				4 4				ال ک		<u> </u>	_			_	_			للمصاف	

Figure 18 : 1ère partie du diagramme prévisionnel

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **21** sur **97**

ERSEUS

	Г							MAI	RS							Т										AV	RIL									٦
				12	2							13				T			14									15					Т	1	.6	٦
		18		20)		21		2	25	1	27			28			1			3			8	1	1	.0	Т	1:	L	<u> </u>	12	1	1	.5	٦
		L		N	1		J			L		Μ			J			L		1	M			L		Ν	Ā	+	J			V			Ĺ	-
	1	2 3	4	12	3 4	1	23	4	1 2	3	4 1	2	3 4	1	23	4	1 2	2 3	4	1 2	3	4	1 2	3	4	1 2	3,	4 1	2	3 4	1	23	4	1 2	3 4	4
3ème Jalon : vérification du modèle méca SATURN			T								1		TÎ												1			T			\square				П	٦
Rédaction compte-rendu + envoie						Į –					T																	T							П	٦
Modifications eventuelles :																												T	П		\square				\square	٦
Modifications modèle mécanique SATURN													\square						Ţ						┭			\top	\square						Π	٦
Réunion interne groupe + compte-rendu	G																											T			\square				П	٦
Comparaison des modèles effectués OCTAVE-SATURN				JP					J	P																		T	П		\square				\square	٦
Compte-rendu de la comparaison												JP																T	П		\square				\square	٦
Continuation rapport :																												T	П		\square				\square	٦
Outils gestion de projet (mise à jour)			CS								1																	1							П	٦
Partie SATURN (partie méca)				(CS			C	CS																1			Т	П		П				\square	٦
Réunion interne groupe + compte-rendu						i					1		G															T	\square		\square					٦
4ème Jalon : vérification de la comparaison effectuée														G														T	П		\square				\square	٦
Rédaction compte-rendu + envoie			Π											(С													T	П		\square				П	٦
Modifications eventuelles :																												T	П		\square				\square	٦
Modifications de la comparaison											Τ						JP											Т	П		Π					Τ
Réunion interne groupe + compte-rendu													П					G										T	П		Π				\square	
Continuation rapport :																												Т	П		\square					Τ
Outils gestion de projet (mise à jour)										CS	;														1			T	П						\square	Ī
Partie comparaison OCTAVE-SATURN (partie méca)						ÍΤ					Τ		T						J	Р					Τ			Т	П		Π					Τ
Conclusion						I															J	P						T	П		Π				\square	٦
Mise en page																	CS											T			\Box					
Réunion interne groupe + compte-rendu			\Box								Τ		\Box									0	G					Т			\Box					٦
Modifications éventuelles :																												Т	П		\square					٦
Modifications du rapport																								CS				Т			Π					٦
5ème Jalon : vérification rapport + vérifier les points PV																												G	Π		Π					٦
Rédaction compte-rendu + envoie																												Т	С		\square					٦
Modifications éventuelles :						1					1								1						1			T	П		\square					٦
Modifications du rapport						ÍΤ					Τ		T												Τ			Т		CS	Π					٦
Réunion relecture rapport						[1		1															T	П		9	G				٦
Envoie rapport final																												T	П		\Box		С			٦
PowerPoint						[C	S						CS					JP				Τ			\square					
Test PowerPoint																						CS				G		Т	П		\square					٦
Réunion PowerPoint											Ι																G	Τ					\Box		i T	٦
Modifications éventuelles :										Π			\Box															1					\Box			Τ
Modifications du PowerPoint											1		Π														q	6	П		\Box		Π			٦
Soutenance (15/04 à vérifier)						1					1								1						1			T	П		$(\top$				G	G

Figure 19 : 2ème partie du diagramme de Gantt prévisionnel

Page 22 sur 97

	Lege	ends	
Julien	J	Cédric et Samuel	CS
Cédric	С	Julien et Pauline	JP
Pauline	Р	Groupe	G
Samuel	S		

Figure 20 : Légende du diagramme de Gantt

3.8. Diagramme Gantt réévalué

			JANVI	IER							FÉ\	VRIER												MARS						
	4			5			6			7			8			9					10						11			
	23	;	28		31	4		6	11		13	18	2	20	27	2		1	4	1	6	8		11	1	2	13		14	15
	M		L		J	L		М	L		М	L	1	М	M	1-+		V	l	-	Μ	V		L	1	N I	Μ		J	V
	123	3 4	1 2 3	3 4 1	2 3 4	123	3 4 1	2 3 4	1 2 3	4 1	2 3 4	4 1 2 3	4 1 2	3 4	2231	412	3 Ai	LZ Z A	1 2	3 4 1	2 3	4 1 2 3	4 1	234	4 1 2	3 4	123	4 1 2	2 3 4	1 2 3 4
Tâches															M M	1/N	//	N N	1											
Réunion avec M. Ghailan	CS														MM	3M	M	$\mathcal{N}\mathcal{N}$	1											
Outils de gestion de projet (lundi 28 janvier) :															MM	4M	\mathcal{N}	$\mathcal{N}\mathcal{N}$	1											
Tableau répartition des tâches			S			S									MM	4M	\mathcal{N}	$\mathcal{N}\mathcal{N}$	1											
Diagramme de Gantt							S	5							\mathcal{M}	4M	\mathcal{N}	$\mathcal{N}\mathcal{N}$												
Diagramme Bête à cornes			Ρ												M M	4/M	N_{l}	N N	1											
Diagramme Pieuvre			P												MM	4M	\mathcal{N}	$\mathcal{N}\mathcal{N}$	1											
Diagramme Fast						J									\mathcal{M}	$^{\Lambda}M$	\mathcal{N}	$\mathcal{N}\mathcal{N}$												
Outils de gestion de risques (mercredi 30 janvier) :															\mathcal{M}	ΛM	\mathcal{N}	$\mathcal{N}\mathcal{N}$												
Liste des ressources			С												M	1/N	N_{l}	N N	$1 \square$						П					
Tableau des risques				С			С							\square	M M	4/N	N_{i}	N N	1											
Diagramme Paretto								С							\mathcal{M}	4M	\mathcal{N}	$\mathcal{N}\mathcal{N}$												
1er jalon : Définition précise du besoin (jeudi 31 janvier) + notes pour PV				G											M	4/N	\mathcal{N}	N N	1						\square	П				
Rédaction PV + envoie pour acceptation + signature						С									M	4/N	\mathcal{N}	N N	1						П					
Etude de l'existant partie OCTAVE :															M	4/N	N_{l}	N N	$1 \square$						Π					
Etude du 3D OCTAVE									S						M M	4/M	N_{l}	N N	1											
Etude cinématique du 3D OCTAVE											S				M	ΛM	\mathcal{N}	$\mathcal{N}\mathcal{N}$												
Compte rendu d'études 3D OCTAVE							\Box					S		\square	M	ΛM	\mathcal{N}	NN	1						\square	\square		ПП		
Etude de l'existant partie SATURN :															M	4/N	\mathcal{N}	N N	1						\square					
Etude du 3D SATURN									С					\square	M M	4/N	N_{i}	NN	1						1					
Etude cinématique du 3D SATURN											С			\square	M M	\sqrt{N}	\mathcal{N}	N N	1						\mathbf{T}	\square		ПП		
Compte rendu d'études 3D SATURN												С			M	4M	\mathcal{N}	N N							\square					
Etude du modèle mécanique OCTAVE															M	4M	\mathcal{N}	N N	1						Π					
Etude globale						Р									M	4/N	\mathcal{N}	N N	1						П					
Etude approfondie (calculs revérifiés)																JP											JP			JP
Compte rendu d'études modèle mécanique OCTAVE															M M	4/N	N_{i}	N N	1											
Etablissement du modèle mécanique de SATURN :															M M	ΛM	$\overline{\mathcal{N}}$	N N	1						T					
Réalisation des calculs théoriques													C	CS	$\Lambda\Lambda\Lambda$	$\sqrt{\Lambda}$	$\Lambda\Lambda$	\overline{M}		CS						CS	;			

Figure 21 : 1ère partie du diagramme de Gantt réévalué

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

						MA	RS																		A٧	'RIL															
				12						13						14								15						Т						16					
		18		20	1	1	22		25	2	7	1	L		2	1	3		5	8	1	9		10		11		1	2		15		1	7	T		18			1	.9
		L		Μ			V		L	1	Л	I	_		М	1	М	1	V	L		Μ		Μ		J	1	\	/		L		N	Л			J			``	7
	1	23	4 1	2 3	4	1 2	3 4	4 1	2 3 4	1 2	3 4	1 2	3 4	1 2	3 4	1	2 3	4 1 2	2 3 4	123	4 1	2 3	4	1 2 3	3 4	1 2 3	3 4	1 2	3 4	ł 1	2 3	4 1	2 3	,	4 1	23	3 4 5	56	78	12	3 4
Etude approfondie (calculs revérifiés)	J	Р	\Box			\square								Π		П		\square			ГГ		ТГ		П					Т		П			\Box					i T	Π
Compte rendu d'études modèle mécanique OCTAVE			JF	P										1		1														Т		IT.								$i \square$	
Etablissement du modèle mécanique de SATURN :						$ \top$!		\prod														Т											
Réalisation des calculs théoriques		C	CS			Π								Π		\square		\Box			ΓΓ		П		П		\Box			Т									\square	T	
Réunion interne groupe + compte-rendu					G											\square														Т		П								i T	
2ème Jalon : vérification des résultats (Mercredi 20 Mars)					G											П							П							Т		П								(\Box)	
Etude du modèle mécanique OCTAVE :																																									
Etude approfondie (calculs revérifiés)											JP								JP					JP							IP									i TT	
Etablissement du modèle mécanique de SATURN :			í I			í				1				í		í I		í I			ĺ				l í		l í			Ш					\Box						\square
Réalisation des calculs théoriques											C	S											CS									CS									
Réunion interne groupe + compte-rendu																																		G							
3ème Jalon : vérification du modèle méca SATURN (Mercredi 17 Avril)						\Box								\Box				T												Т					G				\Box	\Box	\square
Etude du modèle mécanique OCTAVE :						!																																			
Etude approfondie (calculs revérifiés)						!																																			í I
Etablissement du modèle mécanique de SATURN :						łT										ΙT																				1 L				ιD	1
Réalisation des calculs théoriques																		T												T		П						CS	5		

Figure 22 : 2ème partie du diagramme de Gantt réévalué

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 25 sur 97

						Avri																				M	ai												
				1	7									18									1	9								20						21	1
	2		23	1	4	25		_26		29	1	_30	\neg	1	\neg	2		~	3	1	10		11			12			13		1	4	T	17		18		20)
	1		M	1	4 I.	\nearrow		×		\swarrow		M	\square	M	\square			/	₩	1	V		S			D			L		1	N		V		S		L	
	X Z	8 Aj1	ŹŹ	AIXX	X AI	1 1 3	AA	ZZ	Á 1	ŹŹ	AIX	(Z) B	(Aj2	(z)	3 Aij	11	8 Aj	źŹ	1×1	112	3	4 1	2 3	41	2 3		4 1	12	7	3 4	1 2	3,	4 1	2 3	4 1	2 3	4 1	1 2	3 4
Etude approfondie (calculs revérifiés)	\mathcal{M}	$\Lambda \lambda $	\mathcal{V}		JP			\mathcal{W}	\wedge	\mathcal{W}	\mathcal{W}	\mathcal{N}	\mathcal{N}	\mathcal{M}	\mathcal{M}	\mathcal{M}	$\Lambda\Lambda$	\mathcal{N}	\mathcal{N}	1													1		L				
Etablissement du modèle mécanique de SATURN :	\sim	M/	\mathcal{V}	ΔN	M	\sim	\mathcal{M}	\mathcal{N}	\square	\mathcal{V}	\mathcal{W}	\mathcal{N}	1/1	\mathcal{N}	Δ	\sim	$\Delta \Delta$	\wedge	\mathcal{V}	1																			
Réalisation des calculs théoriques	\mathcal{M}		S		CS	5		\mathcal{W}	Δ	\mathcal{W}	1/1/	\mathcal{N}	1/	\mathcal{M}	$\Delta \Delta$	Λ	$\Delta \Delta$	\mathcal{N}	\mathcal{N}	1																			
Compte rendu d'études modèle mécanique SATURN	$\sim 10^{-1}$	\mathcal{N}	\mathcal{W}	ΛN	\mathcal{M}	\mathcal{N}	\mathcal{M}	С		\mathcal{W}		С		\mathcal{N}	\mathcal{M}	\mathcal{M}	Λ	\mathcal{N}	\mathcal{W}	1																			
Expliquation du modèle mécanique de SATURN	\mathcal{M}	\sim	\mathcal{V}	ΔN	M	\sim	\mathcal{M}	\mathcal{N}		G		\mathcal{N}	\mathcal{M}	\mathcal{N}	\mathcal{N}	\sim	$\Lambda \Lambda$	\wedge	\mathcal{V}	1																			
Etude du modèle mécanique OCTAVE :		\mathcal{N}	\mathcal{W}	AN	M	\mathcal{N}	\mathcal{M}	\mathcal{W}	\wedge	\mathcal{W}	\mathcal{W}	\mathcal{N}	\mathcal{M}	\mathcal{M}	\mathcal{M}	Λ	$\Lambda\Lambda$	\mathcal{N}	\mathcal{N}	1																			
Etude approfondie (calculs revérifiés)	Δ	$\Lambda \lambda$	\mathcal{M}	ΔN	\mathcal{M}	$\Lambda \Lambda$	M	\mathcal{W}	Δ	\mathcal{N}	1/1		JP			Λ	$\Lambda\Lambda$	\wedge	\mathcal{N}	1																			
Harmonisation des modèles mécaniques OCTAVE-SATURN	Λ	$\Lambda \lambda \lambda$	\mathcal{W}	ΔN	M	M	\mathcal{W}	\mathcal{W}	Δ	\mathcal{W}	1/1	\mathcal{N}	1/2	\mathcal{M}	Λ	JP	S	\wedge	\mathcal{N}	1															L.				
Etude du modèle mécanique OCTAVE :	-	N V	\mathcal{W}	ΛN	\mathcal{N}	\mathcal{N}	\mathcal{W}	\mathcal{W}	\mathcal{N}	\mathcal{W}	$\mathcal{V}\mathcal{V}$	\mathcal{N}	\mathcal{N}	\mathcal{N}	N	\mathcal{M}	Λ	\mathcal{N}	\mathcal{W}	1		1		j.									1		L				
Compte rendu d'études modèle mécanique OCTAVE	\sim	N V	\mathcal{N}	ΔN	$\mathcal{N}\mathcal{N}$	\mathcal{N}	\mathcal{W}	\mathcal{W}	//	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	$\Lambda \lambda$	\mathcal{M}	$\Lambda \Lambda$	J	P																				
Etablissement du modèle mécanique de SATURN :	\mathcal{M}	$\mathcal{N}\mathcal{V}$	\mathcal{W}	ΛN	M	\mathcal{N}	\mathcal{W}	\mathcal{W}	\wedge	\mathcal{N}	\mathcal{W}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	Λ	\mathcal{N}	\mathcal{N}	1																			
Compte rendu d'études modèle mécanique SATURN	\mathcal{M}	M	\mathcal{N}	ΔN	\mathcal{M}	\mathcal{N}	M	\mathcal{W}	//	\mathcal{N}	1/1/	\mathcal{N}	1/3/	\mathcal{N}	\mathcal{N}	\mathcal{M}	$\Lambda \Lambda$	(CS																				
Comparaison des modèles OCTAVE-SATURN	\mathcal{M}	\mathcal{N}	\mathcal{W}	$\Lambda\Lambda$	\mathcal{M}	\mathcal{N}	\mathcal{M}	\mathcal{W}	\mathcal{N}	\mathcal{W}	\mathcal{W}	\mathcal{N}	\mathcal{M}	\mathcal{N}	\mathcal{N}	\mathcal{M}	$\Lambda\Lambda$	\mathcal{N}	\mathcal{N}	1																			
Comparaison des modèles mécaniques OCTAVE-SATURN	\mathcal{M}	$\mathcal{N}\mathcal{V}$	\mathcal{W}	ΛN	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{W}	\wedge	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	\mathcal{M}	\mathcal{N}	\mathcal{N}	1			JP																
Compte-rendu de la comparaison	Δ	$\mathcal{N}\mathcal{V}$	\mathcal{V}	AN	$\Delta \Lambda$	\sim	\mathcal{M}	\mathcal{N}	\square	$\mathcal{V}\mathcal{V}$	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\sim	$\Lambda\Lambda$	\wedge	\mathcal{V}	1					J														
Rapport :	\mathcal{M}	$\mathcal{N}\mathcal{V}$	\mathcal{W}	AN	\mathcal{M}	\mathcal{N}	\mathcal{W}	\mathcal{W}	\mathcal{N}	\mathcal{W}	\mathcal{W}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	Λ	\mathcal{N}	\mathcal{N}	1																			
Introduction	\mathcal{M}	N V	\mathcal{W}	ΛN	M	\mathcal{N}	\mathcal{N}	\mathcal{W}	\wedge	\mathcal{N}	\mathcal{W}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	\mathcal{M}	\mathcal{N}	\mathcal{N}	JC																			
Partie Méthodologie	\sim	NV	\mathcal{N}	ΔN	\mathcal{N}	\mathcal{N}	W/	\mathcal{W}	//	\mathcal{N}	V V	\mathcal{N}	\mathcal{N}	\mathcal{N}	N_{i}	\mathcal{M}	Λ	\mathcal{N}	\mathcal{N}	1							S												
Conclusion	\mathcal{M}	NV	\mathcal{W}	ΛN	M	\mathcal{N}	\mathcal{N}	\mathcal{W}	\wedge	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	Λ	\mathcal{N}	\mathcal{N}	1								C											
Outils gestion de projet (mise à jour)	\sim	M	\mathcal{N}	ΛN	$\mathcal{N}\mathcal{N}$	\mathcal{N}	\mathcal{M}	\mathcal{W}	//	\mathcal{N}	1/1	\mathcal{N}	\mathcal{N}	\mathcal{N}	$\Lambda \lambda$	\mathcal{M}	$\Lambda\Lambda$	\mathcal{N}	\mathcal{N}	1						С													
Mise en page	\mathcal{M}	M	\mathcal{W}	ΔN	M	\mathcal{N}	\mathcal{M}	\mathcal{W}	\wedge	\mathcal{N}	\mathcal{M}	\mathcal{N}	\mathcal{M}	\mathcal{N}	\mathcal{N}	\mathcal{M}	$\Lambda \Lambda$	\mathcal{N}	\mathcal{N}	1						J			С			S							
PowerPoint :	\mathcal{M}	$\mathcal{N}\mathcal{V}$	\mathcal{W}	ΛN	M	\mathcal{N}	\mathcal{N}	\mathcal{W}	\wedge	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	\mathcal{M}	\mathcal{N}	\mathcal{N}	1																			
Mise en page	\sim	$\mathcal{N}\mathcal{V}$	\mathcal{N}	ΛN	$\mathcal{N}\mathcal{N}$	\mathcal{N}	\mathcal{N}	\mathcal{W}	//	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	$\Lambda \Lambda$	\mathcal{N}	\mathcal{N}	1												C j							
Réunion interne groupe + compte-rendu	\mathcal{M}	$\mathcal{N}\mathcal{V}$	\mathcal{W}	ΛN	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{W}	\wedge	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	\mathcal{M}	\mathcal{N}	\mathcal{N}	1													G						
Modifications éventuelles :	$\Delta \Lambda$	N V	VV	$\Lambda \overline{\Lambda}$	$\Delta \Delta $	\overline{N}	\mathcal{N}	$\mathcal{V}\mathcal{V}$	\angle	VV	\mathcal{N}	\overline{V}	$\sqrt{\lambda}$	$\overline{\mathcal{N}}$	$\sqrt{\Delta}$	\mathcal{N}	Λ	//	\mathcal{V}	1																			
Modifications du rapport	- $ -$	N V	\mathcal{W}	$\Lambda \overline{V}$	NN	\overline{NV}	\sqrt{N}	\mathcal{W}	\overline{N}	\mathcal{N}	$\overline{\mathcal{W}}$	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{M}	\mathcal{N}	\overline{N}	\mathcal{N}	1														\Box		S			
PowerPoint	- $ M$	NV	VV	$\Lambda \overline{\Lambda}$	Μi,	N V	N V	VV	$\overline{/}$	VV	\mathcal{W}	\overline{N}	N	$\overline{\mathcal{N}}$	$\sqrt{1}$	\mathcal{N}	Δ	$\overline{/}$	\mathcal{V}	1									T					\Box		С		T	
Envoi du rapport final :	-	N	$\mathcal{V}\mathcal{V}$	ΛN	ΝĨ	\overline{N}	N/	Ŵ	//	\mathcal{N}	\mathcal{N}	N V	N	\mathcal{N}	$\sqrt{1}$	\mathcal{N}	Λ ľ	\overline{N}	\mathcal{V}	1										\Box		П		\Box					
Envoi du rapport au Client		$\Lambda \overline{\Lambda}$	1/7	$\Lambda \overline{\Lambda}$	$\Lambda \Lambda$	$\Lambda \overline{\Lambda}$	1/V	1/7	\mathbb{Z}	\mathbb{N}	1/l	$\overline{\mathcal{N}}$	1/l	$\Lambda \Lambda$	4Λ	$\Lambda \Lambda$	$\Lambda\Lambda$		1/	$1 ext{T}$													T				Q	С	

Figure 23 : 3ème partie du diagramme de Gantt réévalué

	Leg	ends	
Julien	J	Cédric et Samuel	CS
Cédric	С	Julien et Pauline	JP
Pauline	Р	Julein, Pauline et Samuel	JPS
Samuel	S	Groupe	G

Figure 24 : Légende du diagramme de Gantt

Comme vous le constatez, le tableau des tâches prévisionnel et final, ainsi que le GANTT prévisionnel et final ne se sont pas les mêmes.

Effectivement, beaucoup plus d'heures de travail que le suggéré le tableau des tâches et GANTT prévisionnel, ont étés effectués par les membres de l'équipe projet.

Cela est dû, d'une part, au manque d'expérience des membres de l'équipe dans le domaine de la planification des tâches et d'une autre part, dû au fait de l'apprentissage par erreur tout au long du projet.

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 26 sur 97

4. <u>Etude cinématique des modèles OCTAVE/SATURN</u> 4.1. <u>Etude cinématique du modèle OCTAVE</u>

Le but de cette partie est d'étudier ce qui a été réalisé par nos prédécesseurs concernant la modélisation mécanique du Mini-Apterros. Cette modélisation mécanique permet de nous représenter de manière mathématique le comportement du système ainsi que celui de son environnement. Nous avons revu toutes les étapes de calcul qui ont été réalisées pour les comprendre et nous les approprier. Les paramètres qui ont été obtenu pour le modèle d'OCTAVE seront comparés aux paramètres qui seront déterminés plus tard sur le modèle mécanique du Mini-Apterros de SATURN.

4.1.1. Groupes de pièces

- 0 : {Bâti}
- 1 : {Plateau 1}
- 2 : {Plateau 2}
- 3 : {Hélice 1}
- 4 : {Hélice 2}

Figure 25 : Graphe des liaisons OCTAVE

Le mini Apterros est un appareil permettant de réaliser des décollages et atterrissages verticales (VTVL). Dans la version créée par l'association OCTAVE, un birotor à hélices a été installé et sont motorisées par rotations en sens opposées afin de compenser les mouvements de lacets de l'appareil. De plus, cela permet de générer

une poussée plus importante avec des hélices moins grandes.

Afin de permettre la double rotation des hélices sur le même axe, l'enchaînement des deux pivots aux points D et C est nécessaire. Les pivots aux points A et B permettent, quant à elles, de diriger la force de poussée générée par les hélices. Ainsi, le contrôle du mini Apterros est possible à tout moment.

4.2. Etude cinématique du modèle SATURN

4.2.1. Groupes de pièces

- 0 : {Bâti ; Chambre directionnel de fluide}
- 1 : {Ventilateur caréné}
- 2 : {Ventilateur caréné}
- 3 : {Ventilateur caréné}
- 4 : {Ventilateur caréné}
- 5 : {Moteur}
- 6:{Bielle}
- 7 : {Moteur}
- 8 : {Bielle}
- 9 : {Tuyère}

4.2.2. Graphe des liaisons SATURN

Figure 28 : Schéma cinématique SATURN

Des turbines (ventilateurs carénés), aux nombres de 4 [1, 2, 3, 4], accélère de l'air à l'intérieur de la chambre directionnel de fluide [0], qui, elle sert-à diriger le flux d'air vers la tuyère [0]. La tuyère [9] est fixée à la chambre de fluide [0] à l'aide d'une liaison pivot réalisé par une bague de serrage. L'orientation de la tuyère [9] est effectuée grâce à un système comprenant deux mécanismes Chacun des mécanismes sont composés d'un moteur [5, 7] qui est reliée au bâti [0] via une liaison pivot. D'une bielle [6,8] fixée d'un côté au moteur [5, 7] et de l'autre à la tuyère [9] via des liaisons pivot. L'actionnement des moteurs donne une direction à la tuyère [9], donc une orientation de poussée pour l'ensemble Mini-Apterros SATURN.

A savoir, l'ensemble du système est alimenté par deux batteries de 7,5kW chacune.

Le système Mini-Apterros qui est utilisé pour la modélisation mécanique se compose de deux parties : une partie supérieure représentant le corps du système et une partie inférieure représentant le propulseur du système. Ces deux parties sont reliées grâce à une pièce appelée cardan qui permet deux rotations entre la partie supérieure et inférieure. Lors des calculs, la masse du cardan n'a pas été prise en compte car la pièce est réalisée en aluminium et sa masse est donc négligeable par rapport à celles du corps et du propulseur. Il a été défini, *m* la masse totale du système et G son centre de gravité, *m*_c la masse du corps de notre système et *G*₁ son centre de gravité, m la masse du propulseur et *G*₂ son centre de gravité. Le modèle ressemble à ceci.

5. <u>Méthodologie de résolution des modèles mécaniques</u> 5.1. Schéma simplifié du Mini-Apterros d'OCTAVE et référentiels

Figure 29 : Schéma simplifié du comportement du Mini-Apterros de OCTAVE en mouvement dans l'espace

Cette figure représente le comportement du Mini-Apterros lorsqu'il est en fonctionnement. Le repère R représente le repère terrestre et le repère R' est un repère similaire au repère terrestre mais appliqué au niveau du centre de gravité G de l'appareil. Le repère R_3 est un repère appliqué au centre de gravité G et suit le mouvement du Mini-Apterros. Le point A est centre d'application d'une des 2 liaisons pivots, et, est l'origine du repère R_4 . Le point B est centre d'application de la seconde liaison pivot, et, est l'origine du repère R_5 . G_2 est le point d'application de la force de poussée.

Ce schéma renseigne sur les valeurs des différents vecteurs positions décrivant l'appareil et son déplacement :

$$\overrightarrow{OG} = \overrightarrow{OG(t)} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{R'}$$
$$\overrightarrow{GA} = GA\overrightarrow{k_3}$$
$$\overrightarrow{AB} = AB\overrightarrow{k_4}$$
$$\overrightarrow{BG_2} = BG_2\overrightarrow{k_5}$$
$$\overrightarrow{GG_2} = \overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{BG_2} = GA\overrightarrow{k_3} + AB\overrightarrow{k_4} + BG_2\overrightarrow{k_5}$$

5.2. Schéma simplifié du Mini-Apterros de SATURN et référentiels

Figure 30 : Schéma simplifié du comportement du Mini-Apterros de SATURN en mouvement dans l'espace

Cette figure représente le comportement du Mini-Apterros lorsqu'il est en fonctionnement. Le repère R représente le repère terrestre et le repère R' est un repère similaire au repère terrestre mais appliqué au niveau du centre de gravité G de l'appareil. Le repère R_3 est un repère appliqué au centre de gravité G et suit le mouvement du Mini-Apterros. Le point A est centre d'application de la liaison rotule (vue dans la partie cinématique de SATURN). Le repère R_5 suit la tuyère de l'appareil et la force est traduite dans ce repère suivant le vecteur $\vec{k_5}$ en B.

Ce schéma renseigne sur les valeurs des différents vecteurs positions décrivant l'appareil et son déplacement :

$$\overline{OG} = \overline{l(t)} = \begin{pmatrix} x \\ y \\ Z \end{pmatrix}_{R'}$$
$$\overline{GA} = l_1 \overline{k_3}$$
$$\overline{AB} = l_2 \overline{k_5}$$
$$\overline{GB} = \overline{GA} + \overline{AB} = l_1 \overline{k_3} + l_2 \overline{k_5}$$

5.3. Matrices de passage

Afin d'effectuer des opérations avec des vecteurs et matrices exprimés dans une base donnée différente, il est nécessaire de traduire dans une base commune. Ici, cette base commune choisie est la base terrestre définie par le repère *R*. Pour déterminer ces matrices de passage, il est impératif de connaître les rotations successives que le Mini-Apterros réalise dans l'espace. Ces rotations sont représentées par l'instauration des angles d'Euler. De plus, les comportements des Mini-Apterros d'OCTAVE et de SATURN sont similaires, les matrices de passage seront donc les mêmes.

Lorsqu'une rotation est effectuée, un nouveau repère est créé comme suit :

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Dans un premier temps, ces schémas permettent de déterminer les matrices de passage d'un repère au suivant :

Le repère R_1 est traduit dans le repère R' par le biais de la matrice S_1 :

$$S_1 = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\varphi & \sin\varphi\\ 0 & -\sin\varphi & \cos\varphi \end{bmatrix}_{R'}$$

Le repère R_2 est traduit dans le repère R_1 par le biais de la matrice S_2 :

$$S_2 = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}_{R'}$$

Le repère R_3 est traduit dans le repère R_2 par le biais de la matrice S_3 :

$$S_3 = \begin{bmatrix} \cos\psi & \sin\psi & 0\\ -\sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{bmatrix}_{R'}$$

Ces matrices ne permettent pour autant pas de traduire directement un vecteur du repère R_3 au repère R', ni du repère R_2 au repère R' car il faut considérer 2 ou 3 angles de rotations. C'est pourquoi, les opérations suivantes sont nécessaires :

Le repère R_2 est traduit dans le repère R' par le biais de la matrice S_{12} , produit matriciel de S_1 avec S_2 :

$$S_{12} = [S_1] \times [S_2]$$
$$S_{12} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ \sin\varphi\sin\theta & \cos\varphi & \cos\theta\sin\varphi \\ \cos\varphi\sin\theta & -\sin\varphi & \cos\varphi\cos\theta \end{bmatrix}_{R'}$$

Le repère R_2 est traduit dans le repère R' par le biais de la matrice S_{123} , produit matriciel de S_{12} avec S_2

$$S_{123} = [S_1] \times [S_2] \times [S_3]$$

 $S_{123} = [S_{12}] \times [S_3]$

 $S_{123} = \begin{bmatrix} \cos\theta\cos\psi & \sin\psi\cos\theta & -\sin\theta\\ \cos\psi\sin\varphi\sin\theta - \cos\varphi\sin\psi & \sin\varphi\sin\theta\sin\psi + \cos\varphi\cos\psi & \cos\theta\sin\varphi\\ \cos\varphi\cos\psi\sin\theta + \sin\varphi\sin\psi & \cos\varphi\sin\theta\sin\psi - \cos\psi\sin\varphi & \cos\varphi\cos\theta \end{bmatrix}_{R'}$

Pour les repères R_4 et R_5 , la procédure est similaire :

Le repère R_4 est traduit dans le repère R' par le biais de la matrice S_4 :

$$S_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}_{R'}$$

Le repère R_5 est traduit dans le repère R_4 par le biais de la matrice S_5 :

$$S_5 = \begin{bmatrix} \cos\beta & 0 & -\sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta \end{bmatrix}_{R'}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 34 sur 97

Le repère R_5 est traduit dans le repère R' par le biais de la matrice S_{45} , produit matriciel de S_4 avec S_5 :

$$S_{45} = [S_4] \times [S_5]$$
$$S_{45} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ \sin \alpha \sin \beta & \cos \alpha & \cos \beta \sin \alpha \\ \cos \alpha \sin \beta & -\sin \alpha & \cos \alpha \cos \beta \end{bmatrix}_{R'}$$

Ainsi, il est possible de traduire tous les vecteurs unitaires des différents repères dans la base R':

$$\vec{J}_{1} = S_{1}\vec{J} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & \sin\varphi \\ 0 & -\sin\varphi & \cos\varphi \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}_{R'} = \begin{pmatrix} 0 \\ \cos\varphi \\ -\sin\varphi \end{pmatrix}_{R'}$$
$$\vec{k}_{1} = S_{1}\vec{k} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & \sin\varphi \\ 0 & -\sin\varphi & \cos\varphi \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} = \begin{pmatrix} 0 \\ \sin\varphi \\ \cos\varphi \end{pmatrix}_{R'}$$
$$\vec{t}_{2} = S_{12}\vec{t} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ \sin\varphi \sin\theta & \cos\varphi & \cos\theta \sin\varphi \\ \cos\varphi \sin\theta & -\sin\varphi & \cos\varphi \cos\theta \end{bmatrix}_{R'} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_{R'} = \begin{pmatrix} \cos\theta \\ \sin\varphi \sin\theta \\ \cos\varphi \sin\theta \end{pmatrix}_{R'}$$
$$\vec{k}_{2} = S_{12}\vec{k} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ \sin\varphi \sin\theta & \cos\varphi & \cos\theta \sin\varphi \\ \cos\varphi \sin\theta & -\sin\varphi & \cos\varphi \cos\theta \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} = \begin{pmatrix} \cos\theta \\ \cos\varphi \sin\theta \\ \cos\varphi \sin\theta \end{pmatrix}_{R'}$$
$$\vec{t}_{3} = S_{123}\vec{t}$$

 $\vec{\iota}_{3} = \begin{bmatrix} \cos\theta\cos\psi & \sin\psi\cos\theta & -\sin\theta\\ \cos\psi\sin\varphi\sin\theta - \cos\varphi\sin\psi & \sin\varphi\sin\theta\sin\psi + \cos\varphi\cos\psi & \cos\theta\sin\varphi\\ \cos\varphi\cos\psi\sin\theta + \sin\varphi\sin\psi & \cos\varphi\sin\theta\sin\psi - \cos\psi\sin\varphi & \cos\varphi\cos\theta \end{bmatrix}_{R'} \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}_{R'}$

 $\vec{\iota_3} = \begin{pmatrix} \cos\theta\cos\psi\\ \cos\psi\sin\varphi\sin\theta - \cos\varphi\sin\psi\\ \cos\varphi\cos\psi\sin\theta + \sin\varphi\sin\psi \end{pmatrix}_{R'}$

 $\vec{J_3} = S_{123}\vec{J}$

 $\vec{J}_{3} = \begin{bmatrix} \cos\theta\cos\psi & \sin\psi\cos\theta & -\sin\theta\\ \cos\psi\sin\varphi\sin\theta - \cos\varphi\sin\psi & \sin\varphi\sin\theta\sin\psi + \cos\varphi\cos\psi & \cos\theta\sin\varphi\\ \cos\varphi\cos\psi\sin\theta + \sin\varphi\sin\psi & \cos\varphi\sin\theta\sin\psi - \cos\psi\sin\varphi & \cos\varphi\cos\theta \end{bmatrix}_{R'} \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}_{R'}$

 $\vec{J_{3}} = \begin{pmatrix} \sin\psi\cos\theta\\ \sin\varphi\sin\theta\sin\psi + \cos\varphi\cos\psi\\ \cos\varphi\sin\theta\sin\psi - \cos\psi\sin\varphi \end{pmatrix}_{R'}$

$$\vec{j_4} = S_4 \vec{j} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}_{R'} = \begin{pmatrix} 0 \\ \cos \alpha \\ -\sin \alpha \end{pmatrix}_{R'}$$
$$\vec{k_4} = S_4 \vec{k} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} = \begin{pmatrix} 0 \\ \sin \alpha \\ \cos \alpha \end{pmatrix}_{R'}$$
$$\vec{t_5} = S_{45} \vec{t} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ \sin \alpha \sin \beta & \cos \alpha & \cos \beta \sin \alpha \\ \cos \alpha \sin \beta & -\sin \alpha & \cos \alpha \cos \beta \end{bmatrix}_{R'} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_{R'} = \begin{pmatrix} \cos \beta \\ \sin \alpha \sin \beta \\ \cos \alpha \sin \beta \end{pmatrix}_{R'}$$
$$\vec{k_5} = S_{45} \vec{k} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ \sin \alpha \sin \beta & \cos \alpha & \cos \beta \sin \alpha \\ \sin \alpha \sin \beta & \cos \alpha & \cos \beta \sin \alpha \\ \cos \alpha \sin \beta & -\sin \alpha & \cos \alpha \cos \beta \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} = \begin{pmatrix} -\sin \beta \\ \cos \beta \sin \alpha \\ \cos \beta \sin \alpha \\ \cos \alpha \sin \beta \end{pmatrix}_{R'}$$

5.4. Déroulement des calculs

5.4.1. Torseur cinématique

En mécanique du solide indéformable, il est pratique de représenter le champ des vitesses de celui-ci dans un torseur nommé torseur cinématique. Sa résultante $\vec{w}_{(S)}^{(R')}$ représente les vitesses de rotation du solide et son moment cinématique $\vec{V}_{(S)}^{(R')}(G)$ représente les vitesses linéaires de l'objet. Ici, le calcul de la vitesse linéaire est réalisé avec la formule de König. Ses composantes sont définies par :

$$\left\{ \mathbf{V}_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{\mathbf{w}}_{(S)}^{(R')} = \dot{\boldsymbol{\varphi}} \, \vec{i} + \dot{\boldsymbol{\theta}} \, \vec{j_{1}} + \dot{\boldsymbol{\psi}} \, \vec{k_{2}} \\ \vec{\mathbf{V}}_{(S)}^{(R')} \, (G) = \vec{\mathbf{V}}_{(S)}^{(R_{3})} \, (G) + \vec{\mathbf{w}}_{(S)}^{(R')} \wedge \overrightarrow{OG} \end{cases}$$

5.4.2. Torseur cinétique

Le torseur cinétique est un outil pratique lorsqu'en mécanique, il est souhaité de déterminer l'énergie cinétique ou déterminer le torseur dynamique d'un solide. On note, généralement, $\vec{P}_{(S)}^{(R')}(G)$ comme étant la résultante cinétique et $\vec{\sigma}_{(S)}^{(R')}(G)$ comme étant le moment cinétique. Ses composantes sont définies par :

$$\left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')} (G) = m \vec{V}_{(S)}^{(R')} (G) \\ \vec{\sigma}_{(S)}^{(R')} (G) = \overline{\overline{I}}_{(S)}^{(R')} \vec{w}_{(S)}^{(R')} \end{cases}$$

On définit également I, la matrice d'inertie du mini-Apterros dans la base R', telle que :

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}_{R}$$

Le Mini-Apterros est considéré comme étant un objet parfaitement cylindrique, il possède donc une infinité de plans de symétries suivant l'axe $\vec{k_3}$. La matrice d'inertie peut ainsi être simplifiée telle que :

$$I = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}_{R}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

5.4.3. Torseur dynamique

Ce torseur permet de décrire les accélérations du système étudié. Il est nécessaire de déterminer ce torseur afin de pouvoir appliquer le Principe Fondamental de la Dynamique.

$$\left\{D_{(S)}^{(R')}\right\}_{G} = \begin{cases} \vec{A}_{(S)}^{(R')}(G) = m \frac{d^{(R')} \vec{P}_{(S)}^{(R')}(G)}{dt} \\ \vec{\delta}_{(S)}^{(R')}(G) = \frac{d^{(R')} \vec{\sigma}_{(S)}^{(R')}(G)}{dt} \end{cases}$$

5.4.4. Torseurs des actions mécaniques extérieures

Dans les deux modèles, seules deux actions mécaniques interviennent pour la résolution du Principe Fondamental de la Dynamique : le poids et la force de poussée. Leurs conditions d'application sont, toutefois, différentes car le système d'orientation entre eux sont différents :

$$\begin{cases} P_{(S)}^{(R')} \\ G \end{cases}_{G}^{R'} = \begin{cases} 0 & 0 \\ 0 & 0 \\ mg & 0 \\ mg & 0 \\ G \end{cases}_{G}^{R'}$$

$$\begin{cases} \tau_{(Fpoussée)}^{(R')} \\ G \end{cases}_{G}^{R'} = \begin{cases} X & L \\ Y & M \\ Z & N \\ G \end{cases}_{G}^{R'}$$

5.4.5. Principe Fondamental de la Dynamique (PFD)

Le Principe Fondamental de la Dynamique (PFD) est une formule décrite par la deuxième loi de Newton. Elle est définie par :

$$\sum \{\tau_{ext}\}_G = \left\{ D_{(S)}^{(R')} \right\}_G$$

Cette formule n'est vraie si, et seulement si, tous les torseurs sont exprimés dans la même base en un même point. Pour faciliter les calculs, la base choisie est la base R' car cette base représente la base terrestre mais appliquée au centre de gravité G du Mini-Apterros. Cela simplifiera l'exploitation des résultats.

Le PFD s'écrira donc :

$$\begin{cases} \tau_{(F_{poussée})}^{(R')} \\ F_{(F_{poussée})}^{(R')} \\ \\ Y \\ Z \\ N \\ \end{bmatrix}_{G}^{(R')} \\ = \begin{cases} D_{(S)}^{(R')} \\ \\ D_{(S)}^{(R')} \\ \\ m\dot{v} \\ I_{xx}\dot{p} \\ \\ m\dot{v} \\ I_{yy}\dot{q} \\ \\ m\dot{w} \\ I_{zz}\dot{r} \\ \end{bmatrix}_{G}^{(R')}$$

Les composantes d'accélération seront sous la forme :

$$\begin{cases} \dot{u} = \frac{X}{m} \\ \dot{v} = \frac{Y}{m} \\ \dot{w} = \frac{Z}{m} + g \end{cases}; \begin{cases} \dot{p} = \frac{L}{I_{XX}} \\ \dot{q} = \frac{M}{I_{YY}} \\ \dot{r} = \frac{N}{I_{ZZ}} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 37 sur 97

ERSEUS

6. <u>Résultats du modèle mécanique d'OCTAVE</u>

6.1. Torseur cinématique

$$\left\{ \mathbf{V}_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{w}_{(S)}^{(R')} = \dot{\varphi} \, \vec{i} + \dot{\theta} \, \vec{j_{1}} + \dot{\psi} \, \vec{k_{2}} = \begin{pmatrix} \dot{\varphi} - \dot{\psi} \sin \theta \\ \dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi \\ -\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta \end{pmatrix}_{R'} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} \\ \vec{v}_{(S)}^{(R')} \\ \vec{v}_{(S)}^{(R')} (G) = \begin{pmatrix} (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi)z - (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta)y \\ (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta)z - (\dot{\varphi} - \dot{\psi} \sin \theta)z \\ (\dot{\varphi} - \dot{\psi} \sin \theta)y - (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi)x \end{pmatrix}_{R'} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} \end{cases}$$

6.2. Torseur cinétique

$$\left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')}(G) = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} = m \begin{pmatrix} (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)z - (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)y \\ (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)x - (\dot{\varphi} - \dot{\psi}\sin\theta)z \\ (\dot{\varphi} - \dot{\psi}\sin\theta)y - (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)x \end{pmatrix}_{R'} \\ \vec{\sigma}_{(S)}^{(R')}(G) = \overline{\overline{I}}_{(S)}^{(R')} \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx}(\dot{\varphi} - \dot{\psi}\sin\theta) \\ I_{yy}(\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi) \\ I_{zz}(-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta) \end{pmatrix}_{R'} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

ERSEUS

6.3. Torseur dynamique

 $\vec{A}_{(S)}^{(R')}(G) = m \begin{pmatrix} \ddot{\theta}(z\cos\varphi + y\sin\varphi) + \ddot{\psi}\cos\theta(z\sin\varphi - y\cos\varphi) - \dot{\theta}\dot{\varphi}(z\sin\varphi - y\cos\varphi) - \dot{\psi}\dot{\theta}\sin\theta(z\sin\varphi - y\cos\varphi) + \dot{\psi}\dot{\phi}\cos\theta(z\cos\varphi + y\sin\varphi) + \dot{\theta}(\dot{z}\cos\varphi + \dot{y}\sin\varphi) + \dot{\psi}\cos\theta(\dot{z}\sin\varphi - \dot{y}\cos\varphi) \\ - \ddot{\varphi}z - \ddot{\theta}x\sin\varphi + \ddot{\psi}(x\cos\varphi\cos\theta + z\sin\theta) - \dot{\theta}\dot{\varphi}x\cos\varphi - \dot{\psi}\dot{\varphi}x\sin\varphi\cos\theta - \dot{\psi}\dot{\theta}(x\cos\varphi\sin\theta - z\cos\theta) - \dot{\varphi}\dot{z} - \dot{\theta}\dot{x}\sin\varphi + \dot{\psi}(\dot{x}\cos\varphi\cos\theta + \dot{z}\sin\theta) \\ \ddot{\varphi}y - \ddot{\theta}x\cos\varphi - \ddot{\psi}(y\sin\theta + x\cos\theta\sin\varphi) + \dot{\theta}\dot{\varphi}x\sin\varphi + \dot{\psi}\dot{\varphi}x\cos\theta\cos\varphi - \dot{\psi}\dot{\theta}(y\cos\theta - x\sin\theta\sin\varphi) + \dot{\varphi}\dot{y} + \dot{\theta}\dot{x}\cos\varphi - \dot{\psi}(\dot{y}\sin\theta + \dot{x}\cos\theta\sin\varphi) \end{pmatrix}_{R'}$

6.4. Torseurs des actions mécaniques extérieures

Comme énoncé dans la sous-partie des actions mécaniques extérieures de la méthodologie, les torseurs du poids et de la poussée s'écrivent donc :

$$\begin{cases} P_{(S)}^{(R')} \\ G \end{cases}_{G}^{G} = \begin{cases} 0 & 0 \\ 0 & 0 \\ mg & 0 \\ \end{bmatrix}_{G}^{G}$$
$$\begin{cases} \tau_{(F)}^{(R_{5})} \\ G_{2} \end{cases}_{G_{2}}^{G} = \begin{cases} 0 & 0 \\ 0 & 0 \\ F & 0 \\ \end{bmatrix}_{G_{2}}^{G}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 39 sur 97

Dans l'optique de préparer le PFD, il est nécessaire de transporter le torseur de poussée dans la même base que celui du poids et du torseur dynamique. Dans un premier temps, le torseur de poussée est traduit dans le repère $\{R'\}$:

$$\left\{\tau_{(F)}^{(R')}\right\}_{G_2} = \begin{cases} -F\sin\beta & 0\\ F\cos\beta\sin\alpha & 0\\ F\cos\alpha\cos\beta & 0 \\ \end{bmatrix}_{G_2}$$

Puis, il est déplacé du point G2 au point G en utilisant la formule de changement de point :

$$\vec{M}_{G}^{(R')} = \vec{M}_{G_{2}}^{(R')} + \vec{G}\vec{G_{2}} \wedge \vec{R}_{\tau}$$

$$\vec{M}_{G}^{(R')} = \vec{0} + \vec{G}\vec{G_2} \wedge \vec{R}_{\tau}$$

 $\overrightarrow{GG_2}$ peut être décomposé comme suit :

$$\overrightarrow{GG_2} = \overrightarrow{GA}_{(R3)} + \overrightarrow{AB}_{(R4)} + \overrightarrow{BG_2}_{(R5)}$$

L'expression de chacun des trois vecteurs dans le repère $\{R'\}$ est notée à l'aide des matrices de passage de la manière suivante :

La matrice de passage S_{123} permet le passage du repère R3 vers le repère $\{R'\}$ tel que :

$$\overrightarrow{GA} = S_{123} \begin{pmatrix} 0 \\ 0 \\ GA \end{pmatrix}_{R_3} = GA \begin{pmatrix} -sin\theta \\ cos\theta sin\varphi \\ cos\varphi cos\theta \end{pmatrix}_{R'}$$

La matrice de passage S4 permet le passage du repère R4 vers le repère R' tel que :

$$\overrightarrow{AB} = S_4 \begin{pmatrix} 0\\0\\AB \end{pmatrix}_{R_4} = \begin{bmatrix} 1 & 0 & 0\\0 & \cos\alpha & \sin\alpha\\0 & -\sin\alpha & \cos\alpha \end{bmatrix} \begin{pmatrix} 0\\0\\AB \end{pmatrix}_{R_4} = AB \begin{pmatrix} 0\\\sin\alpha\\\cos\alpha \end{pmatrix}_{R_4}$$

La matrice de passage S_{45} permet le passage du repère R5 vers le repère R' tel que :

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 40 sur 97

FRSEUS

$$\overrightarrow{BG_{2}} = S_{45} \begin{pmatrix} 0\\0\\BG_{2} \end{pmatrix}_{R_{5}} = \begin{bmatrix} \cos\beta & 0 & -\sin\beta\\\sin\alpha \sin\beta & \cos\alpha & \sin\alpha \cos\beta\\\cos\alpha \sin\beta & -\sin\alpha & \cos\alpha \cos\beta \end{bmatrix} \begin{pmatrix} 0\\0\\BG_{2} \end{pmatrix}_{R_{5}} = BG_{2} \begin{pmatrix} -\sin\beta\\\sin\alpha \cos\beta\\\cos\alpha \cos\beta \end{pmatrix}_{R_{7}}$$

Ainsi :

$$\overrightarrow{GG_{2}} = GA \begin{pmatrix} -\sin\theta \\ \cos\theta\sin\varphi \\ \cos\varphi\cos\theta \end{pmatrix}_{(R')} + AB \begin{pmatrix} 0 \\ \sin\alpha \\ \cos\alpha \end{pmatrix}_{R'} + BG_{2} \begin{pmatrix} -\sin\beta \\ \sin\alpha\cos\beta \\ \cos\alpha\cos\beta \end{pmatrix}_{R'}$$

L'expression de $\overrightarrow{GG_2}$ dans le repère $\{R'\}$ est :

$$\overrightarrow{GG_{2}} = \begin{pmatrix} -GA\sin\theta - BG_{2}\sin\beta \\ GA\cos\theta\sin\varphi + AB\sin\alpha + BG_{2}\sin\alpha\cos\beta \\ GA\cos\varphi\cos\theta + AB\cos\alpha + BG_{2}\cos\alpha\cos\beta \end{pmatrix}_{R}$$

Le moment de poussée est donc :

$$\vec{M}_{G}^{(R')} = \vec{G}\vec{G_{2}} \wedge \vec{R}_{\tau}$$

$$\vec{M}_{G}^{(R')} = \begin{pmatrix} -GA\sin\theta - BG_{2}\sin\beta \\ GA\cos\theta\sin\varphi + AB\sin\alpha + BG_{2}\sin\alpha\cos\beta \\ GA\cos\varphi\cos\theta + AB\cos\alpha + BG_{2}\cos\alpha\cos\beta \end{pmatrix}_{R'} \wedge \begin{pmatrix} -F\sin\beta \\ F\cos\beta\sin\alpha \\ F\cos\beta\sin\alpha \\ F\cos\alpha\cos\beta \end{pmatrix}_{G_{2}}$$

$$\vec{M}_{G}^{(R')} = \begin{pmatrix} F(GA\cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F(GA(\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha) \\ F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha) \end{pmatrix}$$

Finalement, le torseur de la poussée exprimé au point G dans le repère R' est :

$$\left\{\tau_{(F)}^{(R')}\right\}_{G} = \begin{cases} -F\sin\beta & F(GA\cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F\cos\beta\sin\alpha & F(GA(\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha) \\ F\cos\alpha\cos\beta & F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha) \\ \end{cases}_{G}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **41** sur **97**

6.5. Principe Fondamental de la Dynamique

$$\sum \{\tau_{ext}\}_G = \left\{D_{(S)}^{(R')}\right\}_G$$

Le PFD s'écrira donc :

$$\left\{\tau_{(F_{poussée})}^{(R')}\right\}_{G} + \left\{P_{(S)}^{(R')}\right\}_{G} = \left\{D_{(S)}^{(R')}\right\}_{G}$$

((F. GA $\cos\beta\cos\theta$ ($\cos\alpha\sin\varphi - \sin\alpha\cos\varphi$)		(0	0)	(mù	$I_{xx}\dot{p}$
4	F cos β sin α	$F(GA (sin\theta cos\alpha cos\beta - sin\beta cos\phi cos\theta) - ABsin\beta cos\alpha)$	+ {	0	0 = -	{ mṫ	$I_{yy}\dot{q}$
	$F\cos\alpha\cos\beta$	$F(GA(\cos\theta\sin\phi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha)$	G	(mg	0) _G	(mŵ	$I_{zz}\dot{r}$

Les composantes d'accélération seront sous la forme :

$$\dot{u} = \frac{-F\sin\beta}{m} \\ \dot{v} = \frac{F\cos\beta\sin\alpha}{m} \\ \dot{w} = \frac{F\cos\alpha\beta\sin\alpha}{m} + g \end{cases}; \begin{cases} \dot{p} = \frac{F.GA\cos\beta\cos\theta(\cos\alpha\sin\phi-\sin\alpha\cos\phi)}{I_{xx}} \\ \dot{q} = \frac{F(GA(\sin\theta\cos\alpha\cos\beta-\sin\beta\cos\phi\cos\theta)-AB\sin\beta\cos\alpha)}{I_{yy}} \\ \dot{r} = \frac{F(GA(\cos\theta\sin\phi\sin\beta-\sin\theta\sin\alpha\cos\theta)+AB\sin\beta\sin\alpha)}{I_{zz}} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

ERSEUS

7. <u>Résultats de modèle mécanique de SATURN</u>

7.1. Torseur cinématique

$$\left\{ \mathbf{V}_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{w}_{(S)}^{(R')} = \dot{\varphi} \, \vec{i} + \dot{\theta} \, \vec{j_{1}} + \dot{\psi} \, \vec{k_{2}} = \begin{pmatrix} \dot{\varphi} - \dot{\psi} \sin \theta \\ \dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi \\ -\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta \end{pmatrix}_{R'} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} \\ \vec{v}_{(S)}^{(R')} \\ \vec{v}_{(S)}^{(R')} (G) = \begin{pmatrix} (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi)z - (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta)y \\ (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta)x - (\dot{\varphi} - \dot{\psi} \sin \theta)z \\ (\dot{\varphi} - \dot{\psi} \sin \theta)y - (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi)x \end{pmatrix}_{R'} = \begin{pmatrix} u \\ v \\ W \end{pmatrix}_{R'}$$

7.2. Torseur cinétique

$$\left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')} \left(G \right) = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} = m \begin{pmatrix} (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi)z - (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta)y \\ (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta)x - (\dot{\varphi} - \dot{\psi} \sin \theta)z \\ (\dot{\varphi} - \dot{\psi} \sin \theta)y - (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi)x \end{pmatrix}_{R'} \\ \vec{\sigma}_{(S)}^{(R')} \left(G \right) = \overline{I}_{(S)}^{(R')} \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx}(\dot{\varphi} - \dot{\psi} \sin \theta) \\ I_{yy}(\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi) \\ I_{zz}(-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta) \end{pmatrix}_{R'} \end{cases}$$

7.3. Torseur dynamique

$$\left\{ D_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{I}_{xx}(\ddot{\varphi} - \ddot{\psi}\sin\theta - \dot{\psi}\dot{\theta}\cos\theta) \\ \vec{\delta}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{yy}(\ddot{\theta}\cos\varphi + \ddot{\psi}\cos\theta\sin\varphi - \dot{\theta}\dot{\phi}\sin\varphi - \dot{\psi}\dot{\theta}\sin\theta\sin\varphi + \dot{\psi}\dot{\phi}\cos\theta\cos\varphi) \\ I_{zz}(-\ddot{\theta}\sin\varphi + \ddot{\psi}\cos\varphi\cos\theta - \dot{\theta}\dot{\phi}\cos\varphi - \dot{\psi}\dot{\phi}\sin\varphi\cos\theta - \dot{\psi}\dot{\theta}\cos\varphi\sin\theta) \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx}\dot{p} \\ I_{yy}\dot{q} \\ I_{zz}\dot{r} \end{pmatrix}_{R} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **43** sur **97**

 $\vec{A}_{(S)}^{(R')}(G) = m \begin{pmatrix} \ddot{\theta}(z\cos\varphi + y\sin\varphi) + \ddot{\psi}\cos\theta(z\sin\varphi - y\cos\varphi) - \dot{\theta}\dot{\phi}(z\sin\varphi - y\cos\varphi) - \dot{\psi}\dot{\theta}\sin\theta(z\sin\varphi - y\cos\varphi) + \dot{\psi}\dot{\phi}\cos\theta(z\cos\varphi + y\sin\varphi) + \dot{\theta}(\dot{z}\cos\varphi + \dot{y}\sin\varphi) + \dot{\psi}\cos\theta(\dot{z}\sin\varphi - \dot{y}\cos\varphi) \\ - \ddot{\varphi}z - \ddot{\theta}x\sin\varphi + \ddot{\psi}(x\cos\varphi\cos\theta + z\sin\theta) - \dot{\theta}\dot{\phi}x\cos\varphi - \dot{\psi}\dot{\phi}x\sin\varphi\cos\theta - \dot{\psi}\dot{\theta}(x\cos\varphi\sin\theta - z\cos\theta) - \dot{\phi}\dot{z} - \dot{\theta}\dot{x}\sin\varphi + \dot{\psi}(\dot{x}\cos\varphi\cos\theta + \dot{z}\sin\theta) \\ \ddot{\varphi}y - \ddot{\theta}x\cos\varphi - \ddot{\psi}(y\sin\theta + x\cos\theta\sin\varphi) + \dot{\theta}\dot{\phi}x\sin\varphi + \dot{\psi}\dot{\phi}x\cos\theta\cos\varphi - \dot{\psi}\dot{\theta}(y\cos\theta - x\sin\theta\sin\varphi) + \dot{\phi}\dot{y} + \dot{\theta}\dot{x}\cos\varphi - \dot{\psi}(\dot{y}\sin\theta + \dot{x}\cos\theta\sin\varphi) \end{pmatrix}_{R'}$

7.4. Torseurs des actions mécaniques extérieures

Comme énoncé dans la sous-partie des actions mécaniques extérieures de la méthodologie, les torseurs du poids et de la poussée s'écrivent donc :

Dans l'optique de préparer le PFD, il est nécessaire de transporter le torseur de poussée dans la même base que celui du poids et du torseur dynamique. Dans un premier temps, le torseur de poussée est traduit dans le repère $\{R'\}$:

$$\left\{\tau_{(F)}^{(R')}\right\}_{B} = \begin{cases} -F\sin\beta & 0\\ F\cos\beta\sin\alpha & 0\\ F\cos\alpha\cos\beta & 0 \end{cases}_{B}$$

Puis, il est déplacé du point B au point G en utilisant la formule de changement de point :

 $\vec{M}_{G}^{(R')} = \vec{M}_{B}^{(R')} + \vec{GB} \wedge \vec{R}_{\tau}$ $\vec{M}_{G}^{(R')} = \vec{0} + \vec{GB} \wedge \vec{R}_{\tau}$

 \overrightarrow{GB} peut être décomposé comme suit :

$$\overrightarrow{GA} = l_1 \overrightarrow{k_2} = l_1 \begin{pmatrix} -\sin\theta \\ \cos\theta \sin\varphi \\ \cos\varphi \cos\theta \end{pmatrix}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 44 sur 97

$$\overrightarrow{AB} = l_2 \overrightarrow{k_5} = l_2 \begin{pmatrix} -\sin\beta\\\cos\beta\sin\alpha\\\cos\alpha\cos\beta \end{pmatrix}$$
$$\overrightarrow{GB} = \overrightarrow{GA} + \overrightarrow{AB} = l_1 \begin{pmatrix} -\sin\theta\\\cos\theta\sin\phi\\\cos\phi\cos\theta \end{pmatrix} + l_2 \begin{pmatrix} -\sin\beta\\\cos\beta\sin\alpha\\\cos\alpha\cos\beta \end{pmatrix}$$

Ainsi,

$$\overrightarrow{GB} = \begin{pmatrix} -l_1 \sin\theta - l_2 \sin\beta \\ l_1 \cos\theta \sin\varphi + l_2 \sin\alpha \cos\beta \\ l_1 \cos\varphi \cos\theta + l_2 \cos\alpha \cos\beta \end{pmatrix}$$

Le moment de poussée est donc :

$$\begin{split} \vec{M}_{G} &= \vec{M}_{B} + \vec{GB} \wedge \vec{R} \\ \vec{M}_{G} &= \vec{0} + \begin{pmatrix} -l_{1}\sin\theta - l_{2}\sin\beta \\ l_{1}\cos\theta\sin\varphi + l_{2}\sin\alpha\cos\beta \\ l_{1}\cos\varphi\cos\theta + l_{2}\cos\alpha\cos\beta \end{pmatrix} \wedge \begin{pmatrix} -F\sin\beta \\ F\cos\beta\sin\alpha \\ F\cos\beta\sin\alpha \end{pmatrix} \\ \vec{M}_{G} &= \begin{pmatrix} Fl_{1}\cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi) \\ Fl_{1}(-\sin\beta\cos\varphi\cos\theta + \cos\beta\cos\alpha\sin\theta) \\ Fl_{1}(-\cos\beta\sin\alpha\sin\theta + \sin\beta\cos\theta\sin\varphi) \end{pmatrix} \end{split}$$

Finalement, le torseur de la poussée exprimé au point G dans le repère R' est :

$$\left\{ \tau_{(F)}^{(R')} \right\}_{G} = \begin{cases} -F \sin\beta & F l_{1} \cos\beta \cos\theta (\cos\alpha \sin\varphi - \sin\alpha \cos\varphi) \\ F \cos\beta \sin\alpha & F l_{1} (-\sin\beta \cos\varphi \cos\theta + \cos\beta \cos\alpha \sin\theta) \\ F \cos\beta \cos\alpha & F l_{1} (-\cos\beta \sin\alpha \sin\theta + \sin\beta \cos\theta \sin\varphi) \\ \end{cases}_{G}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **45** sur **97**

FRSEUS

7.5. <u>Principe Fondamental de la Dynamique</u>

$$\sum \{\tau_{ext}\}_G = \left\{D_{(S)}^{(R')}\right\}_G$$

Le PFD s'écrira donc :

$$\left\{\tau_{(F_{poussée})}^{(R')}\right\}_{G} + \left\{P_{(S)}^{(R')}\right\}_{G} = \left\{D_{(S)}^{(R')}\right\}_{G}$$

(−F sinβ	$F l_1 cos \beta cos \theta(cos \alpha sin \varphi - sin \alpha cos \varphi)$) (0	0)	(mù	$I_{xx}\dot{p}$
$F \cos\beta \sin\alpha$	$F l_1 (-\sin\beta \cos\varphi \cos\theta + \cos\beta \cos\alpha \sin\theta)$	+ 0	0{ =	{ mṫ	I _{yy} ġ
$(Fcos\beta cos\alpha$	$F l_1 (-\cos\beta \sin\alpha \sin\theta + \sin\beta \cos\theta \sin\phi)$	G_{G} (mg	0) _G	(mŵ	$I_{zz}\dot{r}$

Les composantes d'accélération seront sous la forme :

$$\begin{cases} \dot{u} = \frac{-F\sin\beta}{m} \\ \dot{v} = \frac{F\cos\beta\sin\alpha}{m} \\ \dot{w} = \frac{F\cos\alpha\beta\sin\alpha}{m} + g \end{cases}; \begin{cases} \dot{p} = \frac{Fl_1\cos\beta\cos\theta(\cos\alpha\sin\phi - \sin\alpha\cos\phi)}{I_{xx}} \\ \dot{q} = \frac{Fl_1(-\sin\beta\cos\phi\cos\theta + \cos\beta\cos\alpha\sin\theta)}{I_{yy}} \\ \dot{r} = \frac{Fl_1(-\cos\beta\sin\alpha\sin\theta + \sin\beta\cos\theta\sin\phi)}{I_{zz}} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 46 sur 97

8. <u>Simplification du modèle mécanique d'OCTAVE</u> 8.1. <u>Théorie de simplification</u>

Dans cette partie la méthodologie reste la même cependant, la théorie de simplification est une approximation des petits angles.

En effet, le mini-Apterros est un véhicule VTVL, c'est-à-dire qui décolle verticalement et atterri verticalement. De plus, en vol, il n'est sensé se déplacer que par translation.

En théorie, les angles φ , θ , ψ , α , et β sont donc très petits. Nous allons donc faire les approximations suivantes :

 $\cos\varphi \simeq 1 \ et \ \sin\varphi \simeq \varphi$

 $\cos \theta \simeq 1 \ et \ \sin \theta \simeq \theta$ $\cos \psi \simeq 1 \ et \ \sin \psi \simeq \psi$ $\cos \alpha \simeq 1 \ et \ \sin \alpha \simeq \alpha$ $\cos \beta \simeq 1 \ et \ \sin \beta \simeq \beta$

En tenant compte de ces approximations, les matrices de passages deviennent :

$$\begin{split} S_{1} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix}; S_{2} = \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & 0 \\ \theta & 0 & 1 \end{bmatrix}; S_{3} = \begin{bmatrix} 1 & \psi & 0 \\ -\psi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ S_{12} &= \begin{bmatrix} S_{1} \end{bmatrix} \begin{bmatrix} S_{2} \end{bmatrix} \\ S_{12} &= \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & 0 \\ \theta & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\theta \\ \varphi \theta & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix} \\ S_{123} &= \begin{bmatrix} S_{12} \end{bmatrix} \begin{bmatrix} S_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\theta \\ \varphi \theta & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix} \begin{bmatrix} 1 & \psi & 0 \\ -\psi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \varphi \theta - \psi & \varphi \theta \psi + 1 & \varphi \\ \varphi \psi & -\varphi & 1 \end{bmatrix} \\ S_{4} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \alpha \\ 0 & -\alpha & 1 \end{bmatrix}; S_{5} = \begin{bmatrix} 1 & 0 & -\beta \\ 0 & 1 & 0 \\ \beta & 0 & 1 \end{bmatrix} \\ S_{45} &= \begin{bmatrix} S_{4} \end{bmatrix} \begin{bmatrix} S_{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\beta \\ \alpha \beta & 1 & \alpha \\ \beta & -\alpha & 1 \end{bmatrix} \end{split}$$

8.2. Torseur cinématique

$$\left\{ \mathbf{V}_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{w}_{(S)}^{(R')} = \dot{\varphi} \, \vec{i} + \dot{\theta} \, \vec{j}_{1} + \dot{\psi} \, \vec{k}_{2} = \begin{pmatrix} \dot{\varphi} - \dot{\psi}\theta \\ \dot{\theta} + \dot{\psi}\varphi \\ -\dot{\theta}\varphi + \dot{\psi} \end{pmatrix}_{R'} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} \\ \vec{v}_{(S)}^{(R')} \left(G \right) = \begin{pmatrix} (\dot{\theta} + \dot{\psi}\varphi) \, z - ((-\dot{\theta}\varphi + \dot{\psi})y) \\ (-\dot{\theta}\varphi + \dot{\psi})x - (\dot{\varphi} - \dot{\psi}\theta)z \\ (\dot{\varphi} - \dot{\psi}\theta)y - (\dot{\theta} + \dot{\psi}\varphi)x \end{pmatrix}_{R'} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} \end{cases}$$

8.3. Torseur cinétique

$$\left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')} (G) = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} = m \begin{pmatrix} (\dot{\theta} + \dot{\psi}\varphi) \, z - ((-\dot{\theta}\varphi + \dot{\psi})y) \\ (-\dot{\theta}\varphi + \dot{\psi})x - (\dot{\varphi} - \dot{\psi}\theta)z \\ (\dot{\varphi} - \dot{\psi}\theta)y - (\dot{\theta} + \dot{\psi}\varphi)x \end{pmatrix}_{R'} \\ \vec{\sigma}_{(S)}^{(R')} (G) = \bar{I}_{(S)}^{(R')} \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx}\dot{\varphi} \\ I_{yy}\dot{\theta} \\ -I_{zz}\dot{\theta}\varphi \end{pmatrix}_{R'} \end{cases}$$

8.4. Torseur dynamique

$$\left\{ D_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{A}_{(S)}^{(R')} (G) = m \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix}_{R'} \\ \vec{\delta}_{(S)}^{(R')} (G) = \begin{pmatrix} I_{xx} \ddot{\varphi} \\ I_{yy} \ddot{\theta} \\ I_{zz} (-\ddot{\theta} \varphi - \dot{\theta} \dot{\varphi}) \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx} \dot{p} \\ I_{yy} \dot{q} \\ I_{zz} \dot{r} \end{pmatrix}_{R'} \\ \vec{A}_{(S)}^{(R')} (G) = m \begin{pmatrix} \ddot{\theta} (\varphi y + z) + \ddot{\psi} (\varphi z - y) + \dot{\theta} (\dot{z} + \dot{\varphi} y + \varphi \dot{y}) + \dot{\psi} (\dot{\varphi} z + \varphi \dot{z} - \dot{y}) \\ -\ddot{\varphi} z - \ddot{\theta} \varphi x + \ddot{\psi} (\theta z + x) - \dot{\varphi} (\dot{z} + \dot{\theta} x) + \dot{\theta} (\dot{\psi} z - \varphi \dot{x}) + \dot{\psi} (\dot{x} + \theta \dot{z}) \\ \ddot{\varphi} y - \ddot{\theta} x - \ddot{\psi} (\varphi x + \theta y) + \dot{\varphi} (\dot{y} - \dot{\psi} x) - \dot{\theta} (\dot{x} + \dot{\psi} y) - \dot{\psi} (\theta \dot{y} + \varphi \dot{x}) \end{cases}$$

Comme énoncé dans la sous-partie des actions mécaniques extérieures de la méthodologie, les torseurs du poids et de la poussée s'écrivent donc :

$$\left\{ P_{(S)}^{(R')} \right\}_{G} = \left\{ \begin{matrix} 0 & 0 \\ 0 & 0 \\ mg & 0 \end{matrix} \right\}_{G}$$
$$\left\{ \tau_{(F)}^{(R_{5})} \right\}_{G_{2}} = \left\{ \begin{matrix} 0 & 0 \\ 0 & 0 \\ F & 0 \end{matrix} \right\}_{G_{2}}$$

Dans l'optique de préparer le PFD, il est nécessaire de transporter le torseur de poussée dans la même base que celui du poids et du torseur dynamique. Dans un premier temps, le torseur de poussée est traduit dans le repère $\{R'\}$:

$$\left\{\tau_{(F)}^{(R')}\right\}_{G_2} = \left\{\begin{matrix} -F\beta & 0\\ F\alpha & 0\\ F & 0 \end{matrix}\right\}_{G_2}$$

Puis, il est déplacé du point G2 au point G en utilisant la formule de changement de point :

$$\vec{M}_{G}^{(R')} = \vec{M}_{G_{2}}^{(R')} + \vec{G}\vec{G_{2}} \wedge \vec{R}_{\tau}$$

 $\overrightarrow{GG_2}$ peut être décomposé comme suit :

$$\overrightarrow{GG_2} = \overrightarrow{GA}_{(R3)} + \overrightarrow{AB}_{(R4)} + \overrightarrow{BG_2}_{(R5)}$$

L'expression de chacun des trois vecteurs dans le repère $\{R'\}$ est notée à l'aide des matrices de passage de la manière suivante :

$$\begin{aligned} \overrightarrow{GA} &= S_{12} \begin{pmatrix} 0 \\ 0 \\ GA \end{pmatrix}_{R_3} = \begin{bmatrix} 1 & 0 & -\theta \\ \varphi \theta & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ GA \end{pmatrix}_{R_3} = GA \begin{pmatrix} -\theta \\ \varphi \\ 1 \end{pmatrix}_{(R')} \\ \overrightarrow{AB} &= S_4 \begin{pmatrix} 0 \\ 0 \\ AB \end{pmatrix}_{R_4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \alpha \\ 0 & -\alpha & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ AB \end{pmatrix}_{R_4} = AB \begin{pmatrix} 0 \\ \alpha \\ 1 \end{pmatrix}_{R'} \\ \overrightarrow{BG_2} &= S_{45} \begin{pmatrix} 0 \\ 0 \\ BG_2 \end{pmatrix}_{R_5} = \begin{bmatrix} 1 & 0 & -\beta \\ \alpha \beta & 1 & \alpha \\ \beta & -\alpha & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ BG_2 \end{pmatrix}_{R_5} = BG_2 \begin{pmatrix} -\beta \\ \alpha \\ 1 \end{pmatrix}_{R'} \\ \overrightarrow{GG_2} &= GA \begin{pmatrix} -\theta \\ \varphi \\ 1 \end{pmatrix}_{(R')} + AB \begin{pmatrix} 0 \\ \alpha \\ 1 \end{pmatrix}_{R'} + BG_2 \begin{pmatrix} -\beta \\ \alpha \\ 1 \end{pmatrix}_{R'} \\ \overrightarrow{GG_2} &= \begin{pmatrix} -GA \ \theta - BG_2 \ \beta \\ GA \ \varphi + AB \ \alpha + BG_2 \alpha \\ GA + AB + BG_2 \end{pmatrix}_{R'} \end{aligned}$$

Le moment de poussée est donc :

$$\vec{M}_{G}^{(R')} = \vec{0} + \vec{G}\vec{G_{2}} \wedge \vec{R}_{\tau}$$
$$\vec{M}_{G}^{(R')} = \begin{pmatrix} F(GA(\varphi - \alpha)) \\ F(GA(\theta - \beta) - AB\beta) \\ F(GA(\varphi\beta - \theta\alpha) + AB\beta) \end{pmatrix}$$

Finalement, le torseur de la poussée exprimé au point G dans le repère R' est :

$$\left\{ \tau_{(F)}^{(R')} \right\}_{G} = \begin{cases} -F\beta & F(GA(\varphi - \alpha)) \\ F\alpha & F(GA(\theta - \beta) - AB\beta) \\ F & F(GA(\varphi\beta - \theta\alpha) + AB\beta) \\ \end{cases}_{G}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 49 sur 97

8.6. Principe Fondamental de la Dynamique

$$\sum \{\tau_{ext}\}_G = \left\{ D_{(S)}^{(R')} \right\}_G$$

Le PFD s'écrira donc :

$$\begin{cases} \tau_{(F_{poussée})}^{(R')} \\ F_{\alpha} & F(GA(\varphi - \alpha) \\ F\alpha & F(GA(\varphi - \beta) - AB\beta) \\ F & F(GA(\varphi\beta - \theta\alpha) + AB\beta) \\ \end{cases} _{G}^{+} + \begin{cases} 0 & 0 \\ 0 & 0 \\ mg & 0 \\ \end{cases} _{G}^{+} = \begin{cases} m\dot{u} & I_{xx}\dot{p} \\ m\dot{v} & I_{yy}\dot{q} \\ m\dot{w} & I_{zz}\dot{r} \\ \end{cases} _{G}^{+} \end{cases} _{G}^{+}$$

Les composantes d'accélération seront sous la forme :

$$\begin{cases} \dot{u} = \frac{-F\beta}{m} \\ \dot{v} = \frac{F\alpha}{m} \\ \dot{w} = \frac{F}{m} + g \end{cases}; \begin{cases} \dot{p} = \frac{F(GA(\varphi - \alpha))}{I_{XX}} \\ \dot{q} = \frac{F(GA(\varphi - \beta) - AB\beta)}{I_{YY}} \\ \dot{r} = \frac{F(GA(\varphi - \beta) - AB\beta)}{I_{ZZ}} \end{cases}$$

9. <u>Simplification du modèle mécanique de SATURN</u> 9.1. <u>Théorie de simplification</u>

Dans cette partie la méthodologie reste la même cependant, la théorie de simplification est une approximation des petits angles.

En effet, le mini-Apterros est un véhicule VTVL, c'est-à-dire qui décolle verticalement et atterri verticalement. De plus, en vol, il n'est sensé se déplacer que par translation.

La rotation ψ peut être négligée car aucun mouvement de lacet ne sera généré.

En théorie, les angles φ , θ , α , et β sont donc très petits. Nous allons donc faire les approximations suivantes :

 $\cos \varphi \simeq 1 \ et \ \sin \varphi \simeq \varphi$

 $\cos\theta\simeq 1\,et\,\sin\theta\simeq\theta$

 $\cos \alpha \simeq 1 \ et \ \sin \alpha \simeq \alpha$

 $\cos\beta \simeq 1 \ et \ \sin\beta \simeq \beta$

En tenant compte de ces approximations, les matrices de passages deviennent :

$$S_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix}; S_{2} = \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & 0 \\ \theta & 0 & 1 \end{bmatrix}$$
$$S_{12} = \begin{bmatrix} S_{1} \end{bmatrix} \begin{bmatrix} S_{2} \end{bmatrix}$$
$$S_{12} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & 0 \\ \theta & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\theta^{2} \\ \varphi\theta & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 50 sur 97

$$S_{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \alpha \\ 0 & -\alpha & 1 \end{bmatrix}; S_{5} = \begin{bmatrix} 1 & 0 & -\beta \\ 0 & 1 & 0 \\ \beta & 0 & 1 \end{bmatrix}$$
$$S_{45} = \begin{bmatrix} S_{4} \end{bmatrix} \begin{bmatrix} S_{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\beta \\ \alpha\beta & 1 & \alpha \\ \beta & -\alpha & 1 \end{bmatrix}$$

9.2. Torseur cinématique

$$\left\{ \mathbf{V}_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{\mathbf{w}}_{(S)}^{(R')} = \dot{\boldsymbol{\varphi}} \, \vec{i} + \dot{\boldsymbol{\theta}} \, \vec{j}_{1} + \dot{\boldsymbol{\psi}} \, \vec{k}_{2} = \begin{pmatrix} \dot{\boldsymbol{\varphi}} \\ \dot{\boldsymbol{\theta}} \\ -\dot{\boldsymbol{\theta}} \boldsymbol{\varphi} \end{pmatrix}_{R'} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} \\ \vec{\mathbf{v}}_{(S)}^{(R')} \, (G) = \begin{pmatrix} \dot{\boldsymbol{\theta}} z + \dot{\boldsymbol{\theta}} \boldsymbol{\varphi} y \\ -\dot{\boldsymbol{\theta}} \boldsymbol{\varphi} x - \dot{\boldsymbol{\varphi}} z \\ \dot{\boldsymbol{\varphi}} y - \dot{\boldsymbol{\theta}} x \end{pmatrix}_{R'} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} \end{cases}$$

9.3. Torseur cinétique

$$\left\{C_{(S)}^{(R')}\right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')}\left(G\right) = m \begin{pmatrix} \dot{\theta}z + \dot{\theta}\varphi y \\ -\dot{\theta}\varphi x - \dot{\varphi}z \\ \dot{\varphi}y - \dot{\theta}x \end{pmatrix}_{R'} = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} = m \begin{pmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{R'} \\ \vec{\sigma}_{(S)}^{(R')}\left(G\right) = \begin{pmatrix} I_{xx}\dot{\varphi} \\ I_{yy}\dot{\theta} \\ -I_{zz}\dot{\theta}\varphi \end{pmatrix}_{R'} \end{cases}$$

9.4. Torseur dynamique

$$\left\{ \boldsymbol{D}_{(S)}^{(R')} \right\}_{\boldsymbol{G}} = \begin{cases} \vec{\boldsymbol{A}}_{(S)}^{(R')} \left(\boldsymbol{G}\right) = \boldsymbol{m} \begin{pmatrix} \ddot{\boldsymbol{\theta}}(z + \varphi y) + \dot{\boldsymbol{\theta}}(\dot{z} + \dot{\varphi} y + \varphi \dot{y}) \\ -\ddot{\boldsymbol{\theta}}\varphi x - \ddot{\boldsymbol{\varphi}} z - \dot{\boldsymbol{\theta}}(\dot{\boldsymbol{\varphi}} x + \varphi \dot{x}) - \dot{\boldsymbol{\varphi}} \dot{z} \\ \ddot{\boldsymbol{\varphi}} y - \ddot{\boldsymbol{\theta}} x + \dot{\boldsymbol{\varphi}} \dot{y} + \dot{\boldsymbol{\theta}} \dot{x} \end{pmatrix}_{R'} = \boldsymbol{m} \begin{pmatrix} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{v}} \\ \dot{\boldsymbol{w}} \end{pmatrix}_{R'} \\ \vec{\boldsymbol{w}} \end{pmatrix}_{R'} \\ \vec{\boldsymbol{\delta}}_{(S)}^{(R')} \left(\boldsymbol{G}\right) = \begin{pmatrix} I_{xx} \ddot{\boldsymbol{\varphi}} \\ I_{yy} \ddot{\boldsymbol{\theta}} \\ I_{zz} (-\ddot{\boldsymbol{\theta}}\varphi - \dot{\boldsymbol{\theta}} \dot{\boldsymbol{\varphi}}) \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx} \dot{\boldsymbol{p}} \\ I_{yy} \dot{\boldsymbol{q}} \\ I_{zz} \dot{\boldsymbol{r}} \end{pmatrix}_{R'} \end{cases}$$

9.5. Torseurs des actions mécaniques extérieures

Comme énoncé dans la sous-partie des actions mécaniques extérieures de la méthodologie, les torseurs du poids et de la poussée s'écrivent donc :

$$\begin{cases} P_{(S)}^{(R')} \\ G \end{cases}_{G}^{G} = \begin{cases} 0 & 0 \\ 0 & 0 \\ mg & 0 \\ g \end{cases}_{G}^{G}$$
$$\begin{cases} \tau_{(F)}^{(R_{5})} \\ F \end{cases}_{B}^{G} = \begin{cases} 0 & 0 \\ 0 & 0 \\ F & 0 \\ g \end{cases}_{B}^{G}$$

Dans l'optique de préparer le PFD, il est nécessaire de transporter le torseur de poussée dans la même base que celui du poids et du torseur dynamique. Dans un premier temps, le torseur de poussée est traduit dans le repère $\{R'\}$:

$$\left\{\tau_{(F)}^{(R')}\right\}_{B} = \begin{cases} -F\beta & 0\\ F\alpha & 0\\ F & 0 \end{cases}_{B}$$

Puis, il est déplacé du point B au point G en utilisant la formule de changement de point :

$$\vec{M}_{G}^{(R')} = \vec{M}_{B}^{(R')} + \vec{G}\vec{B} \wedge \vec{R}_{\tau}$$

 \overrightarrow{GB} peut être décomposé comme suit :

$$\overrightarrow{GB} = \overrightarrow{GA}_{(R_3)} + \overrightarrow{AB}_{(R_5)}$$

L'expression de chacun des trois vecteurs dans le repère $\{R'\}$ est notée à l'aide des matrices de passage de la manière suivante :

$$\overline{GA} = l_1 \overline{k_2} = l_1 \begin{pmatrix} -\theta \\ \varphi \\ 1 \end{pmatrix}_{R'}$$

$$\overline{AB} = l_2 \overline{k_4} = l_2 \begin{pmatrix} 0 \\ \alpha \\ 1 \end{pmatrix}_{R'}$$

$$\overline{GB} = \overline{GA} + \overline{AB} = l_1 \overline{k_2} + l_2 \overline{k_4} = l_1 \begin{pmatrix} -\theta \\ \varphi \\ 1 \end{pmatrix}_{R'} + l_2 \begin{pmatrix} 0 \\ \alpha \\ 1 \end{pmatrix}_{R'} = \begin{pmatrix} l_1 \theta \\ -l_1 \varphi - l_2 \alpha \\ -l_1 - l_2 \end{pmatrix}_{R'}$$

Le moment de poussée est donc :

$$\vec{M}_{G}^{(R')} = \vec{0} + \vec{G}\vec{B} \wedge \vec{R}_{\tau}$$
$$\vec{M}_{G}^{(R')} = \begin{pmatrix} Fl_{1}(\varphi - \alpha) \\ Fl_{1}(\theta - \beta) \\ Fl_{1}(\varphi\beta - \theta\alpha) \end{pmatrix}$$

Finalement, le torseur de la poussée exprimé au point G dans le repère R' est :

$$\left\{\tau_{(F)}^{(R')}\right\}_{G} = \begin{cases} -F\beta & Fl_{1}(\varphi - \alpha) \\ F\alpha & Fl_{1}(\theta - \beta) \\ F & Fl_{1}(\varphi\beta - \theta\alpha) \end{cases}_{G}$$

9.6. Principe Fondamental de la Dynamique

$$\sum \{\tau_{ext}\}_G = \left\{ D_{(S)}^{(R')} \right\}_G$$

Le PFD s'écrira donc :

$$\left\{\tau_{(F_{poussée})}^{(R')}\right\}_{G} + \left\{P_{(S)}^{(R')}\right\}_{G} = \left\{D_{(S)}^{(R')}\right\}_{G}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 52 sur 97

$$\begin{cases} -F\beta & Fl_1(\varphi - \alpha) \\ F\alpha & Fl_1(\theta - \beta) \\ F & Fl_1(\varphi\beta - \theta\alpha) \end{cases}_G + \begin{cases} 0 & 0 \\ 0 & 0 \\ mg & 0 \end{bmatrix}_G = \begin{cases} m\dot{u} & I_{xx}\dot{p} \\ m\dot{v} & I_{yy}\dot{q} \\ m\dot{w} & I_{zz}\dot{r} \end{cases}_G$$

Les composantes d'accélération seront sous la forme :

$$\begin{cases} \dot{u} = \frac{-F\beta}{m} \\ \dot{v} = \frac{F\alpha}{m} \\ \dot{w} = \frac{F}{m} + g \end{cases}; \begin{cases} \dot{p} = \frac{Fl_1(\varphi - \alpha)}{I_{xx}} \\ \dot{q} = \frac{Fl_1(\theta - \beta)}{I_{yy}} \\ \dot{r} = \frac{Fl_1(\varphi \beta - \theta\alpha)}{I_{zz}} \end{cases}$$

10. Comparaison des deux modèles

Pour comparer les modèles, l'observation des résultats du PFD est essentielle.

PFD du modèle d'octave :

$$\begin{cases} \dot{u} = \frac{-F\sin\beta}{m} \\ \dot{v} = \frac{F\cos\beta\sin\alpha}{m} \\ \dot{w} = \frac{F\cos\alpha\cos\beta}{m} + g \end{cases}; \begin{cases} \dot{p} = \frac{F.GA\cos\beta\cos\theta(\cos\alpha\sin\phi - \sin\alpha\cos\phi)}{I_{xx}} \\ \dot{q} = \frac{F(GA(\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\phi\cos\theta) - AB\sin\beta\cos\alpha)}{I_{yy}} \\ \dot{r} = \frac{F(GA(\cos\theta\sin\phi\sin\beta - \sin\theta\sin\alpha\cos\theta) + AB\sin\beta\sin\alpha)}{I_{zz}} \end{cases}$$

PFD du modèle de Saturn :

$$\begin{cases} \dot{u} = \frac{-F\sin\beta}{m} \\ \dot{v} = \frac{F\cos\beta\sin\alpha}{m} \\ \dot{w} = \frac{F\cos\alpha\beta\sin\alpha}{m} \\ \dot{w} = \frac{F\cos\alpha\cos\beta}{m} + g \end{cases}; \begin{cases} \dot{p} = \frac{Fl_1\cos\beta\cos\theta(\cos\alpha\sin\phi - \sin\alpha\cos\phi)}{l_{\chi\chi}} \\ \dot{q} = \frac{Fl_1(-\sin\beta\cos\phi\cos\theta + \cos\beta\cos\alpha\sin\theta)}{l_{yy}} \\ \dot{r} = \frac{Fl_1(-\cos\beta\sin\alpha\sin\theta + \sin\beta\cos\theta\sin\phi)}{l_{\chi\chi}} \end{cases}$$

En comparant ces données, il peut être constaté que les accélérations linéaires des modèles sont identiques. La différence notable observée est au niveau des composantes des accélérations angulaires.

Si l1 = GA (GA étant la longueur allant du centre de gravité G du modèle au point A de la liaison pivot entre le cardant et le corps) alors, la relation suivante peut être établie :

$$\vec{\delta}_{(S)(Octave)}^{(R')}(G) = \begin{pmatrix} F(l_1 \cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F(l_1 (\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta)) \\ F(l_1(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta)) \end{pmatrix}_{R'} + \begin{pmatrix} 0 \\ -FAB\sin\beta\cos\alpha \\ FAB\sin\beta\sin\alpha \end{pmatrix}_{R'}$$
$$= \vec{\delta}_{(S)(Saturn)}^{(R')}(G) + \begin{pmatrix} 0 \\ -FAB\sin\beta\cos\alpha \\ FAB\sin\beta\sin\alpha \end{pmatrix}_{R'}$$

Dans le modèle mécanique de SATURN, la rotation autour de $\vec{k_5}$ est bloquée grâce au mécanisme de maintien et de direction du Mini-Apterros. Ce blocage transforme la rotule simple en une rotule à doigt.

Dans le modèle mécanique d'OCTAVE, AB est la longueur allant d'une liaison pivot à l'autre. Si cette longueur AB = 0 mm alors les 2 liaisons pivots se superposent. Il existe une liaison équivalente qui est également une rotule à doigt. Dans cette configuration, les deux modèles sont similaires tant mécaniquement que mathématiquement.

$$\vec{\delta}_{(S)(Octave)}^{(R')}(G) = \vec{\delta}_{(S)(Saturn)}^{(R')}(G) + \begin{pmatrix} 0 \\ -F. 0. \sin\beta\cos\alpha \\ F. 0. \sin\beta\sin\alpha \end{pmatrix}_{R'}$$
$$\vec{\delta}_{(S)(Octave)}^{(R')}(G) = \vec{\delta}_{(S)(Saturn)}^{(R')}(G)$$

La même conjecture peut être réalisé avec les deux modèles simplifier.

11. Conclusion

Pour conclure, ce projet nous a permis de nous familiariser aussi bien avec les outils de gestion de projet qu'avec les outils mathématiques et mécaniques.

En ce qui concerne la gestion de projet, nous avions aucune expérience des temps requis pour réaliser les différentes tâches du projet. En effet, un grand nombre d'entre-elles ont été sous estimées entrainant une perte de temps à leurs réalisations. Le chemin critique était donc rapidement compromis nous incitant à revoir l'organisation complète du projet et une augmentation nette des heures réalisées sur le temps hors projet. Cependant, l'ensemble du groupe a su s'impliquer et se motiver afin de réaliser le projet dans le temps qui lui était imparti avec succès.

Au niveau de la réalisation des modèles mécaniques et de la comparaison de ceux-ci, le manque d'expérience dans la réalisation de ce genre d'exercice s'est avéré très handicapant et se trouvant plus complexe que ce qu'il semblait. Ce problème est nettement constaté sur le diagramme Gantt car ce furent les tâches les moins correctement évaluées. Cependant, nous avons pu aboutir à un résultat satisfaisant montrant que le modèle d'OCTAVE peut être écrit en fonction du modèle de SATURN et inversement. Finalement, nous avons réussi à créer un modèle mathématique reliant les deux modèles.

Table des annexes

TABLE DES FIGURES	57
Développement des calculs OCTAVE	58
Développement des calculs SATURN	76
Bibliographie et Sitographie	97

Table des figures

Figure 1 : Véhicule à quatre fusées d'Armadillo Aerospace : source : https://en.wikipedia.org/	1
Figure 2: Image du projet Orion équipé d'une propulsion nucléaire pulsée : source :	
https://astronomie.skyrock.com/	1
Figure 3: Schéma du profile d'une pale : Source : L'avionneur	9
Figure 4: Effet gyroscopiques : Source : www.lavionnaire.fr	10
Figure 5: Effet souffle hélicoïdale : Source : www.avialogs.com	10
Figure 6: Annulation souffle hélicoïdale : Source : www.avialogs.com	10
Figure 7 : Diagramme bête à cornes	11
Figure 8 : Diagramme pieuvre	12
Figure 9 : Descriptif des fonctions principales et de contraintes du diagramme pieuvre	12
Figure 10 : Diagramme Fast	13
Figure 11 : Tableau listant les ressources disponible pour le projet	14
Figure 12 : 1ère partie du tableau des risques	15
Figure 13 : 2ème partie du tableau des risques	16
Figure 14 : Légende du tableau des risques	17
Figure 15 : Diagramme de Pareto	18
Figure 16 : Tableau de répartition des tâches prévisionnelles	19
Figure 17 : Tableau de répartition des tâches réévaluées	20
Figure 18 : 1ère partie du diagramme prévisionnel	21
Figure 19 : 2ème partie du diagramme de Gantt prévisionnel	22
Figure 20 : Légende du diagramme de Gantt	23
Figure 21 : 1ère partie du diagramme de Gantt réévalué	24
Figure 22 : 2ème partie du diagramme de Gantt réévalué	25
Figure 23 : 3ème partie du diagramme de Gantt réévalué	26
Figure 24 : Légende du diagramme de Gantt	26
Figure 25 : Graphe des liaisons OCTAVE	27
Figure 26 : Schéma cinématique OCTAVE	28
Figure 27 : Graphe des liaisons SATURN	29
Figure 28 : Schéma cinématique SATURN	30
Figure 29 : Schéma simplifié du comportement du Mini-Apterros de OCTAVE en mouvement dans l'espace	e 31
Figure 30 : Schéma simplifié du comportement du Mini-Apterros de SATURN en mouvement dans l'espac	e 32
Figure 31 : Angles d'Euler	33

Développement des calculs OCTAVE

On définit les repères et vecteurs avec lesquels nous allons travailler dans la suite.

Soit $\overrightarrow{OG}(t)$ le vecteur position du mini-Apterros exprimé dans la base R' tel que :

$$\overrightarrow{OG}(t) = \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{(R')}$$

Soit $\vec{v}(t)$ le vecteur vitesse, dérivée temporelle du vecteur position, exprimé dans le repère R' tel que :

$$\vec{v}(t) = \begin{pmatrix} u \\ v \\ W \end{pmatrix}_{(R')}$$

Soient les vecteurs $\vec{\Omega}(t)$, \vec{F} , et \vec{M} , respectivement la vitesse angulaire, la somme des forces et la somme des moments appliqués au mini-Apterros tels que :

$$\vec{\Omega}(t) = (p, q, r)^T$$
$$\vec{F} = (F_x, F_y, F_z)^T$$
$$\vec{M} = (M_x, M_y, M_z)^T$$

On définit également I, la matrice d'inertie du mini-Apterros dans la base R', telle que :

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}_{R'}$$

Le Mini-Apterros est considéré comme étant un objet parfaitement cylindrique, il possède donc une infinité de plans de symétries suivant l'axe $\vec{k_3}$. La matrice d'inertie peut ainsi être simplifiée telle que :

$$I = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}_{R'}$$

Torseur cinématique

On cherche à déterminer le torseurs cinématique du mini-Apterros. Par définition, on sait que :

$$\left\{V_{(S)}^{(R')}\right\}_{G} = \left\{\begin{matrix} \vec{\Omega}_{(S)}^{R'}(G) \\ \vec{v}_{(S)}^{(R')}(G) \end{matrix}\right\}_{G}$$

Calcul des vitesses linéaires

On rappelle la définition du vecteur vitesse :

$$\vec{v} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{(R')}$$

Ici, on cherche à déterminer le vecteur vitesse du solide au point G dans le repère R'. Ce vecteur est donné par l'expression :

$$\vec{v}_{(S)}^{(R')}(G) = \vec{v}_{(S)}^{(R_3)}(G) + \vec{\Omega}_{(S)}^{R'} \wedge \overrightarrow{OG}$$

Avec: $\vec{v}_{(S)}^{(R_3)}(G) = \vec{0}$

D'où,

$$\vec{v}_{(S)}^{(R')}(G) = \begin{pmatrix} p \\ q \\ r \end{pmatrix} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Donc,

$$\vec{v}_{(S)}^{(R')}(G) = \begin{pmatrix} qz - ry \\ rx - pz \\ py - qx \end{pmatrix}$$

Calcul de la vitesse angulaire

On rappelle la définition du vecteur de la vitesse angulaire :

$$\vec{\varOmega}(t) = (p, q, r)^T$$

D'après les schémas des repères et angles d'Euler, on identifie graphiquement l'expression suivante :

$$\vec{\Omega}_{(S)}^{R\prime} = \dot{\varphi}\vec{\imath} + \dot{\theta}\vec{\jmath_1} + \dot{\psi}\vec{k_2}$$

On souhaite exprimer les axes \vec{i} , $\vec{j_1}$ et $\vec{k_2}$ dans le repère R'.

Sachant que l'axe \vec{i} fait partie de la base du repère R' on a :

Années 2018 - 2019

$$\vec{\iota} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_R$$

Sachant que la rotation φ permet le passage de R1 vers R', l'axe $\vec{j_1}$ s'écrit tel que :

$$\vec{J}_1 = S_1 \begin{pmatrix} 0\\1\\0 \end{pmatrix}_{R_1} = \begin{pmatrix} 0\\cos\varphi\\-sin\varphi \end{pmatrix}_{R'}$$

Sachant que les rotations φ et θ permettent le passage du repère R2 vers le repère R', l'axe $\vec{k_2}$ s'écrit tel que :

$$\overrightarrow{k_{2}} = S_{12} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R_{2}} = \begin{pmatrix} -\sin\theta \\ \cos\theta\sin\varphi \\ \cos\varphi\cos\theta \end{pmatrix}_{R}$$

D'après l'expression des axes ci-dessus dans le repère R', on obtient :

 $\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\varphi & \cos\theta\sin\varphi \\ 0 & -\sin\varphi & \cos\varphi\cos\theta \end{bmatrix} \begin{pmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}$

On en déduit l'expression de la vitesse angulaire :

 $\vec{\Omega}_{(S)}^{R'}(G) = \begin{cases} p = \dot{\varphi} - \dot{\psi}sin\theta \\ q = \dot{\theta}cos\varphi + \dot{\psi}sin\varphi cos\theta \\ r = -\dot{\theta}sin\varphi + \dot{\psi}cos\varphi cos\theta \end{cases}$

En injectant les expressions de p, q et r dans la vitesse exprimée précédemment, on obtient : $\vec{v}_{(S)}^{(R')}(G) = \begin{cases} u = (\dot{\theta} \cos\varphi + \dot{\psi} \sin\varphi \cos\theta)z - (-\dot{\theta} \sin\varphi + \dot{\psi} \cos\varphi \cos\theta)y \\ v = (-\dot{\theta} \sin\varphi + \dot{\psi} \cos\varphi \cos\theta)x - (\dot{\varphi} - \dot{\psi} \sin\theta)z \\ w = (\dot{\varphi} - \dot{\psi} \sin\theta)y - (\dot{\theta} \cos\varphi + \dot{\psi} \sin\varphi \cos\theta)x \end{cases}
begin{subarray}{l} \\ R' \end{cases}$

On obtient ainsi le torseur cinématique du mini-Apterros :

$$\left\{V_{(S)}^{(R')}\right\}_{G} = \left\{\begin{matrix}\vec{\Omega}_{(S)}^{R'}(G) = \dot{\phi}\vec{\iota} + \dot{\theta}\vec{J_{1}} + \dot{\psi}\vec{k_{2}}\\ \vec{v}_{(S)}^{(R')}(G) = \frac{d^{(R_{3})}\vec{G}\vec{G}}{dt} + \vec{\Omega}_{(S)}^{R'}(G) \wedge \vec{O}\vec{G} = \begin{pmatrix}p\\q\\r\end{pmatrix} \wedge \begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}qz - ry\\rx - pz\\py - qx\end{pmatrix}\right\}_{G}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

erseus

Torseur cinétique

On cherche à déterminer le torseur cinétique du mini-Apterros. Par définition on sait que :

$$\left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')}(G) \\ \vec{\sigma}_{(S)}^{(R')}(G) \end{cases}$$

Calcul de la quantité de mouvement

On sait que :

$$\vec{P}_{(S)}^{(R')}(G) = m \, \vec{v}_{(S)}^{(R')}(G)$$

D'où,

$$\vec{P}_{(S)}^{(R')}(G) = m \begin{pmatrix} u \\ v \\ W \end{pmatrix}_{R'}$$

Calcul du moment cinétique

On sait que :

$$\vec{\sigma}_{(S)}^{(R')}(G) = I_{(S)}^{(R')} \vec{\Omega}_{(S)}^{(R')}$$

D'où,

$$\vec{\sigma}_{(S)}^{(R')}(G) = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}_{R'} \begin{pmatrix} \dot{\varphi} - \dot{\psi}\sin\theta \\ \dot{\theta}\cos\varphi + \dot{\psi}\sin\varphi\cos\theta \\ -\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta \end{pmatrix}_{R'}$$
$$\vec{\sigma}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx}(\dot{\varphi} - \dot{\psi}\sin\theta) \\ I_{yy}(\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi) \\ I_{zz}(-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta) \end{pmatrix}_{R'}$$

On obtient ainsi le torseur cinétique du mini-Apterros :

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 62 sur 97

Torseur dynamique

On cherche à déterminer le torseur dynamique du mini-Apterros. Par définition on sait que :

$$\left\{D_{(S)}^{(R')}\right\}_{G} = \begin{cases} \vec{A}_{(S)}^{(R')}(G) \\ \vec{\delta}_{(S)}^{(R')}(G) \end{cases}_{G} \end{cases}$$

De plus d'après le PFD on a :

 $\sum \vec{F}_{ext} = \left\{ D_{(S)}^{(R')} \right\}_G$

Cette équation implique que la résultante du membre de gauche est égale à la résultante du membre de droite et que le moment du membre de gauche est égal au moment du membre de droite.

Calcul des $\sum \vec{F}_{ext}$

Ici, les forces appliquées au mini-Apterros sont, son poids et la force de poussée.

$$\sum \vec{F}_{ext} = \left\{ P_{(S)}^{(R')} \right\}_G + \left\{ \tau_{(F)}^{(R')} \right\}_G$$

Avec le poids tel que $\left\{P_{(S)}^{(R')}\right\}_{G} = \left\{\begin{matrix} 0 & 0\\ 0 & 0\\ mg & 0 \end{matrix}\right\}_{G}$

Et la poussée telle que $\left\{ \tau_{(F)}^{(R_5)} \right\}_{G_2} = \begin{cases} 0 & 0 \\ 0 & 0 \\ F & 0 \\ \end{pmatrix}_{G_2}$

Pour additionner les deux torseurs ci-dessus, il faut d'abord les exprimer au même point dans le même repère. Nous choisissons donc de déplacer le torseur de la poussée au point G dans le repère R'.

Changement de repère

On note \vec{R}_{τ} la résultante du torseur de la poussée et \vec{M}_{τ} le moment du torseur de la poussée dans le repère R5.

Pour déplacer les vecteurs résultante et moment de la poussée dans le repère R' on utilise la matrice de passage S45.

 $\vec{R}_{\tau}^{(R')} = S45 \begin{pmatrix} 0\\0\\F \end{pmatrix}_{G_2}$ $\vec{R}_{\tau}^{(R')} = \begin{pmatrix} -F\sin\beta\\F\cos\beta\sin\alpha\\F\cos\beta\sin\alpha\\F\cos\alpha\cos\beta \end{pmatrix}_{G_r}$

Le moment de la poussée reste nul.

Ainsi,

$$\left\{\tau_{(F)}^{(R')}\right\}_{G_2} = \begin{cases} -F\sin\beta & 0\\ F\cos\beta\sin\alpha & 0\\ F\cos\alpha\cos\beta & 0 \end{cases}_{G_2}$$

Changement de point

Afin de déplacer le torseur du point G2 au point G on utilise la formule suivante :

$$\vec{M}_{G}^{(R')} = \vec{M}_{G_{2}}^{(R')} + \vec{G}\vec{G_{2}} \wedge \vec{R}_{\tau}$$
$$\vec{M}_{G}^{(R')} = \vec{0} + \vec{G}\vec{G_{2}} \wedge \vec{R}_{\tau}$$

On cherche à déterminer $\overrightarrow{GG_2}$:

D'après le schéma du mini-Apterros, on observe que :

$$\overrightarrow{GG_2} = \overrightarrow{GA}_{(R3)} + \overrightarrow{AB}_{(R4)} + \overrightarrow{BG_2}_{(R5)}$$

On souhaite exprimer chacun des trois vecteurs ci-dessus dans le repère R'.

La matrice de passage S123 permet le passage du repère R3 vers le repère R' tel que :

$$\overrightarrow{GA} = S_{123} \begin{pmatrix} 0\\0\\GA \end{pmatrix}_{R_3} = GA \begin{pmatrix} -\sin\theta\\\cos\theta\sin\varphi\\\cos\varphi\cos\theta \end{pmatrix}_{(R')}$$

La matrice de passage S4 permet le passage du repère R4 vers le repère R' tel que :

$$\overrightarrow{AB} = S_4 \begin{pmatrix} 0\\0\\AB \end{pmatrix}_{R_4} = \begin{bmatrix} 1 & 0 & 0\\0 & \cos\alpha & \sin\alpha\\0 & -\sin\alpha & \cos\alpha \end{bmatrix} \begin{pmatrix} 0\\0\\AB \end{pmatrix}_{R_4} = AB \begin{pmatrix} 0\\\sin\alpha\\\cos\alpha \end{pmatrix}_{R_4}$$

La matrice de passage S45 permet le passage du repère R5 vers le repère R' tel que :

$$\overrightarrow{BG_{2}} = S_{45} \begin{pmatrix} 0\\0\\BG_{2} \end{pmatrix}_{R_{5}} = \begin{bmatrix} \cos\beta & 0 & -\sin\beta\\\sin\alpha\sin\beta & \cos\alpha & \sin\alpha\cos\beta\\\cos\alpha\sin\beta & -\sin\alpha & \cos\alpha\cos\beta \end{bmatrix} \begin{pmatrix} 0\\0\\BG_{2} \end{pmatrix}_{R_{5}} = BG_{2} \begin{pmatrix} -\sin\beta\\\sin\alpha\cos\beta\\\cos\alpha\cos\beta \end{pmatrix}_{R_{7}}$$

Ainsi :

$$\overrightarrow{GG_{2}} = GA \begin{pmatrix} -\sin\theta \\ \cos\theta\sin\phi \\ \cos\varphi\cos\theta \end{pmatrix}_{(R')} + AB \begin{pmatrix} 0 \\ \sin\alpha \\ \cos\alpha \end{pmatrix}_{R'} + BG_{2} \begin{pmatrix} -\sin\beta \\ \sin\alpha\cos\beta \\ \cos\alpha\cos\beta \end{pmatrix}_{R'}$$

On obtient donc l'expression de $\overrightarrow{GG_2}$ dans le repère R' :

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 64 sur 97

$$\overrightarrow{GG_2} = \begin{pmatrix} -GA\sin\theta - BG_2\sin\beta\\ GA\cos\theta\sin\varphi + AB\sin\alpha + BG_2\sin\alpha\cos\beta\\ GA\cos\varphi\cos\theta + AB\cos\alpha + BG_2\cos\alpha\cos\beta \end{pmatrix}_{R'}$$

On a donc,

$$\vec{M}_{G}^{(R')} = \vec{G}\vec{G_{2}} \wedge \vec{R}_{\tau}$$

$$\vec{M}_{G}^{(R')} = \begin{pmatrix} -GA\sin\theta - BG_{2}\sin\beta \\ GA\cos\theta\sin\varphi + AB\sin\alpha + BG_{2}\sin\alpha\cos\beta \\ GA\cos\varphi\cos\theta + AB\cos\alpha + BG_{2}\cos\alpha\cos\beta \end{pmatrix}_{R'} \wedge \begin{pmatrix} -F\sin\beta \\ F\cos\beta\sin\alpha \\ F\cos\beta\sin\alpha \\ F\cos\alpha\cos\beta \end{pmatrix}_{G_{2}}$$

$$\vec{M}_{G}^{(R')} = \begin{pmatrix} F(GA\cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F(GA(\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha) \\ F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha) \end{pmatrix}$$

NB : les détails des calculs seront fournis en annexe

Finalement, on obtient le torseur de la poussée exprimé au point G dans le repère R' :

$$\left\{\tau_{(F)}^{(R')}\right\}_{G} = \begin{cases} -F\sin\beta & F(GA\cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F\cos\beta\sin\alpha & F(GA(\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha) \\ F\cos\alpha\cos\beta & F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha) \\ \end{bmatrix}_{G}$$

Donc :

$$\sum \vec{F}_{ext} = \begin{cases} 0 & 0 \\ 0 & 0 \\ mg & 0 \\ \end{bmatrix}_{G} + \begin{cases} -F\sin\beta & F(GA\cos\beta\cos\alpha(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F\cos\beta\sin\alpha & F(GA(\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha) \\ F\cos\alpha\cos\beta & F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha) \\ \end{bmatrix}_{G}$$

Calcul de $\left\{ D_{(S)}^{(R')} \right\}_{G}$

On sait par définition que :

$$\left\{D_{(S)}^{(R')}\right\}_{G} = \left\{\begin{matrix}\vec{A}_{(S)}^{(R')}(G)\\\vec{\delta}_{(S)}^{(R')}(G)\end{matrix}\right\}_{G}$$

Avec,
$$\vec{A}_{(S)}^{(R')}(G) = \frac{d^{(R')}\vec{p}_{(S)}^{(R')}(G)}{dt} = m\vec{a}_{(S)}^{(R')}(G) = m\frac{d^{(R')}\vec{v}_{(S)}^{(R')}(G)}{dt}$$

Et $\vec{\delta}_{(S)}^{(R')}(G) = \frac{d^{(R')}\vec{\sigma}_{(S)}^{(R')}(G)}{dt} = I_{(S)}^{(R')}\frac{d^{(R')}\vec{a}_{(S)}^{(R')}(G)}{dt}$

Calcul de $\overrightarrow{A}_{(S)}^{\left(R^{\prime} ight) }\left(G ight)$

D'après le PFD on sait que :

$$\vec{A}_{(S)}^{(R')}(G) = \begin{pmatrix} 0\\0\\mg \end{pmatrix} + \begin{pmatrix} -F\sin\beta\\F\cos\beta\sin\alpha\\F\cos\alpha\cos\beta \end{pmatrix} = \begin{pmatrix} -F\sin\beta\\F\cos\beta\sin\alpha\\mg + F\cos\alpha\cos\beta \end{pmatrix}_{R'} = m\vec{a}_{(S)}^{(R')}(G)$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 65 sur 97

Nous avons donc :

$$\vec{a}_{(S)}^{(R')}(G) = \begin{cases} \dot{u} = \frac{F_x}{m} \\ \dot{v} = \frac{F_y}{m} \\ \dot{w} = \frac{F_z}{m} \end{cases}$$

Ce qui permet d'établir l'expression de l'accélération :

$$\vec{a}_{(S)}^{(R')}(G) = \frac{1}{m} \begin{cases} -F \sin \beta \\ F \cos \beta \sin \alpha \\ mg + F \cos \alpha \cos \beta \end{cases}_{R'}$$

Calcul de $ec{\delta}_{(S)}^{\left(R^{\prime}
ight) }\left(G
ight)$

D'après le PFD on sait que :

$$\vec{\delta}_{(S)}^{(R')}(G) = \begin{pmatrix} F(GA \cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F(GA (\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha) \\ F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha) \end{pmatrix}$$

De plus, d'après la définition de $\vec{\delta}^{(R')}_{(S)}(G)$ on sait que :

$$I_{(S)}^{(R')} \frac{d^{(R')} \vec{\Omega}_{(S)}^{(R')}(G)}{dt} = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}_{R'} \begin{pmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx} \dot{p} \\ I_{yy} \dot{q} \\ I_{zz} \dot{r} \end{pmatrix}_{R'}$$

Nous avons donc :

$$\begin{pmatrix} I_{xx}\dot{p} \\ I_{yy}\dot{q} \\ I_{zz}\dot{r} \end{pmatrix}_{R'} = \begin{pmatrix} F(GA\,\cos\beta\,\cos\theta\,(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F(GA\,(\sin\theta\,\cos\alpha\,\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha) \\ F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\,\cos\beta) + AB\sin\beta\sin\alpha) \end{pmatrix}$$

Ce qui permet d'établir l'expression de l'accélération angulaire :

$$\vec{D}_{(S)}^{(R')}(G) = \begin{cases} \dot{p} = \frac{F(GA \cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi))}{I_{xx}} \\ \dot{q} = \frac{F(GA (\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha)}{I_{yy}} \\ \dot{r} = \frac{F(GA (\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha)}{I_{zz}} \end{cases} \end{cases}_{R}$$

Finalement nous avons obtenu le torseur dynamique du mini-Apterros :

$$\left\{D_{(S)}^{(R')}\right\}_{G} = \left\{\begin{array}{c} \vec{A}_{(S)}^{(R')}(G) = \left\{\begin{array}{c} -F\sin\beta\\F\cos\beta\sin\alpha\\mg + F\cos\alpha\cos\beta\end{array}\right\}_{R},\\ \vec{\delta}_{(S)}^{(R')}(G) = \left(\begin{array}{c} F(GA\cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi))\\F(GA(\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha)\\F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha)\end{array}\right)_{R'}\right\}_{G}$$

ERSEUS

Récapitulatif des torseurs du Mini-Apterros OCTAVE

Les torseurs sont tous exprimés au point G, dans le repère terrestre.

Torseur cinématique :

$$\left\{ V_{(S)}^{(R')} \right\}_{G} = \begin{cases} p = \dot{\varphi} - \dot{\psi} \sin\theta \\ q = \dot{\theta} \cos\varphi + \dot{\psi} \sin\varphi \cos\theta \\ r = -\dot{\theta} \sin\varphi + \dot{\psi} \cos\varphi \cos\theta \end{cases} \\ \left\{ v_{(S)}^{(R')}(G) = \begin{cases} u = (\dot{\theta} \cos\varphi + \dot{\psi} \sin\varphi \cos\theta)z - (-\dot{\theta} \sin\varphi + \dot{\psi} \cos\varphi \cos\theta)y \\ v = (-\dot{\theta} \sin\varphi + \dot{\psi} \cos\varphi \cos\theta)z - (\dot{\phi} - \dot{\psi} \sin\theta)z \\ w = (\dot{\phi} - \dot{\psi} \sin\theta)y - (\dot{\theta} \cos\varphi + \dot{\psi} \sin\varphi \cos\theta)x \end{cases} \right\}_{R'} \\ \end{cases}$$

Torseur cinétique :

$$\begin{cases} \mathcal{C}_{(S)}^{(R')} _{G} \end{cases} \\ = \begin{cases} \vec{P}_{(S)}^{(R')} (G) = m \begin{pmatrix} u \\ v _{W} \end{pmatrix}_{R'} = m \begin{pmatrix} (\dot{\theta} \cos\varphi + \dot{\psi} \sin\varphi \cos\theta)z - (-\dot{\theta} \sin\varphi + \dot{\psi} \cos\varphi \cos\theta)y \\ (-\dot{\theta} \sin\varphi + \dot{\psi} \cos\varphi \cos\theta)x - (\dot{\varphi} - \dot{\psi} \sin\theta)z \\ (\dot{\varphi} - \dot{\psi} \sin\theta)y - (\dot{\theta} \cos\varphi + \dot{\psi} \sin\varphi \cos\theta)x \end{pmatrix}_{R'} \\ \vec{\sigma}_{(S)}^{(R')} (G) = \begin{pmatrix} I_{xx} (\dot{\varphi} - \dot{\psi} \sin\theta) \\ I_{yy} (\dot{\theta} \cos\varphi + \dot{\psi} \cos\varphi \sin\varphi) \\ I_{zz} (-\dot{\theta} \sin\varphi + \dot{\psi} \cos\varphi \cos\theta) \end{pmatrix}_{R'} \end{cases}_{G}$$

Torseur dynamique :

$$\left\{ D_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{A}_{(S)}^{(R')}(G) = \begin{cases} -F\sin\beta \\ F\cos\beta\sin\alpha \\ mg + F\cos\alpha\cos\beta \end{cases}_{R'} \\ \vec{\delta}_{(S)}^{(R')}(G) = \begin{pmatrix} F(GA\cos\beta\cos\beta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)) \\ F(GA(\sin\theta\cos\alpha\cos\beta - \sin\beta\cos\varphi\cos\theta) - AB\sin\beta\cos\alpha) \\ F(GA(\cos\theta\sin\varphi\sin\beta - \sin\theta\sin\alpha\cos\beta) + AB\sin\beta\sin\alpha) \end{pmatrix}_{R'} \\ \end{bmatrix}_{G}$$

Approximation des petits angles

Dans cette partie nous reprenons le raisonnement précédent en faisant une approximation aux petits angles.

En effet, le mini-Apterros est un véhicule VTVL, c'est-à-dire qui décolle verticalement et atterri verticalement. De plus, en vol, il n'est sensé se déplacer que par translation.

En théorie, les angles φ , θ , ψ , α , et β sont donc très petits. Nous allons donc faire les approximations suivantes :

 $cos\varphi \simeq 1 \ et \ sin\varphi \simeq \varphi$ $cos\varphi \simeq 1 \ et \ sin\varphi \simeq \varphi$ $cos\varphi \simeq 1 \ et \ sin\varphi \simeq \varphi$ $cos\varphi \simeq 1 \ et \ sin\varphi \simeq \psi$ $cos\alpha \simeq 1 \ et \ sin\varphi \simeq \alpha$ $cos\beta \simeq 1 \ et \ sin\varphi \simeq \beta$

En tenant compte de ces approximations, les matrices de passages deviennent :

$$\begin{split} S_{1} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix}; S_{2} = \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & 0 \\ \theta & 0 & 1 \end{bmatrix}; S_{3} = \begin{bmatrix} 1 & \psi & 0 \\ -\psi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ S_{12} &= \begin{bmatrix} S_{1} \end{bmatrix} \times \begin{bmatrix} S_{2} \end{bmatrix} \\ S_{12} &= \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & 0 \\ \theta & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\theta \\ \varphi \theta & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix} \\ S_{123} &= \begin{bmatrix} S_{12} \end{bmatrix} \times \begin{bmatrix} S_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\theta \\ \varphi \theta & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix} \begin{bmatrix} 1 & \psi & 0 \\ -\psi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \varphi \theta - \psi & \varphi \theta \psi + 1 & \varphi \\ \varphi \psi & -\varphi & 1 \end{bmatrix} \end{split}$$

$$S_{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \alpha \\ 0 & -\alpha & 1 \end{bmatrix}; S_{5} = \begin{bmatrix} 1 & 0 & -\beta \\ 0 & 1 & 0 \\ \beta & 0 & 1 \end{bmatrix}$$
$$S_{45} = S_{4}.S_{5} = \begin{bmatrix} 1 & 0 & -\beta \\ \alpha\beta & 1 & \alpha \\ \beta & -\alpha & 1 \end{bmatrix}$$

Torseur cinématique

Calcul de la vitesse angulaire

L'expression de la vitesse angulaire ne change pas :

$$\vec{\Omega}_{(S)}^{R\prime} = \dot{\varphi}\vec{\imath} + \dot{\theta}\vec{\jmath_1} + \dot{\psi}\vec{k_2} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 69 sur 97

Cependant, les expressions des axes $\vec{i}, \vec{j_1}$ et $\vec{k_2}$ dans le repère R' deviennent :

$$\vec{\iota} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}_{R'}$$
$$\vec{J}_1 = S_1 \begin{pmatrix} 0\\1\\0 \end{pmatrix}_{R_1} = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & \varphi\\0 & -\varphi & 1 \end{bmatrix} \begin{pmatrix} 0\\1\\0 \end{pmatrix}_{R_1} = \begin{pmatrix} 0\\1\\-\varphi \end{pmatrix}_{R'}$$
$$\vec{k}_2 = S_{12} \begin{pmatrix} 0\\0\\1 \end{pmatrix}_{R_2} = \begin{pmatrix} -\theta\\\varphi\\1 \end{pmatrix}_{R'}$$

D'où,

$$\vec{\Omega}_{(S)}^{R'}(G) = \dot{\varphi} \begin{pmatrix} 1\\0\\0 \end{pmatrix}_{R'} + \dot{\theta} \begin{pmatrix} 0\\1\\-\varphi \end{pmatrix}_{R'} + \dot{\psi} \begin{pmatrix} -\theta\\\varphi\\1 \end{pmatrix}_{R'} = \begin{pmatrix} \dot{\varphi} - \dot{\psi}\theta\\\dot{\theta} + \dot{\psi}\varphi\\-\dot{\theta}\varphi + \dot{\psi} \end{pmatrix}_{R'} = \begin{pmatrix} p\\q\\r \end{pmatrix}_{R'}$$

Calcul de la vitesse

$$\vec{v}_{(S)}^{(R')}(G) = \vec{v}_{(S)}^{(R_3)}(G) + \vec{\Omega}_{(S)}^{R'} \wedge \overrightarrow{OG}$$

$$\operatorname{Avec} : \vec{v}_{(S)}^{(R_3)}(G) = \vec{0}$$

$$\vec{v}_{(S)}^{(R')}(G) = \begin{pmatrix} \dot{\varphi} - \dot{\psi}\theta \\ \dot{\theta} + \dot{\psi}\varphi \\ -\dot{\theta}\varphi + \dot{\psi} \end{pmatrix}_{R'} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{(R')} \begin{cases} u = (\dot{\theta} + \dot{\psi}\varphi) z - ((-\dot{\theta}\varphi + \dot{\psi})y) \\ v = (-\dot{\theta}\varphi + \dot{\psi})x - (\dot{\varphi} - \dot{\psi}\theta)z \\ w = (\dot{\varphi} - \dot{\psi}\theta)y - (\dot{\theta} + \dot{\psi}\varphi)x \end{cases}_{R'}$$

Finalement le torseur cinématique est :

$$\{ V_{(S)}^{(R')} \}_{G} = \begin{cases} \vec{\Omega}_{(S)}^{R'}(G) \\ \vec{v}_{(S)}^{(R')}(G) \\ \\ \vec{v}_{(S)}^{(R')}(G) \\ \\ \\ \end{bmatrix}_{G} = \begin{cases} \vec{\Omega}_{(S)}^{R'}(G) = \begin{pmatrix} \dot{\phi} - \dot{\psi}\theta \\ \dot{\theta} + \dot{\psi}\varphi \\ -\dot{\theta}\varphi + \dot{\psi} \end{pmatrix}_{R'} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} \\ \\ \\ \vec{v}_{(S)}^{(R')}(G) = \begin{pmatrix} (\dot{\theta} + \dot{\psi}\varphi) \ z - ((-\dot{\theta}\varphi + \dot{\psi})y) \\ (-\dot{\theta}\varphi + \dot{\psi})x - (\dot{\phi} - \dot{\psi}\theta)z \\ (\dot{\phi} - \dot{\psi}\theta)y - (\dot{\theta} + \dot{\psi}\varphi)x \end{pmatrix}_{R'} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} \\ \\ \\ \end{bmatrix}_{G}$$

Torseur Cinétique

En tenant compte des approximations on obtient le torseur cinétique suivant :

$$\left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')}(G) = m \vec{v}_{(S)}^{(R')}(G) \\ \vec{\sigma}_{(S)}^{(R')}(G) = I_{(S)}^{(R')} \vec{\Omega}_{(S)}^{(R')} \end{cases} \\ \left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')}(G) = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} = m \begin{pmatrix} (\dot{\theta} + \dot{\psi}\varphi) \, z - ((-\dot{\theta}\varphi + \dot{\psi})y) \\ (-\dot{\theta}\varphi + \dot{\psi})x - (\dot{\varphi} - \dot{\psi}\theta)z \\ (\dot{\varphi} - \dot{\psi}\theta)y - (\dot{\theta} + \dot{\psi}\varphi)x \end{pmatrix}_{R'} \\ \left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')}(G) = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} = m \begin{pmatrix} (\dot{\theta} + \dot{\psi}\varphi) \, z - ((-\dot{\theta}\varphi + \dot{\psi})y) \\ (-\dot{\theta}\varphi + \dot{\psi})x - (\dot{\varphi} - \dot{\psi}\theta)z \\ (\dot{\varphi} - \dot{\psi}\theta)y - (\dot{\theta} + \dot{\psi}\varphi)x \end{pmatrix}_{R'} \\ \left\{ C_{(S)}^{(R')}(G) = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}_{R'} \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx}\dot{\phi} \\ I_{yy}\dot{\theta} \\ -I_{zz}\dot{\theta}\varphi \end{pmatrix}_{R'} \\ \end{cases} \right\}_{G} \end{cases}$$

Torseur Dynamique

Calcul de $\overrightarrow{GG_2}$

Le PFD ne change pas, on a toujours :

$$\sum \vec{F}_{ext} = \left\{ D_{(S)}^{(R')} \right\}_G$$

Calcul de $\sum \vec{F}_{ext}$

$$\sum \vec{F}_{ext} = \left\{ P_{(S)}^{(R')} \right\}_{G} + \left\{ \tau_{(F)}^{(R')} \right\}_{G}$$

Avec le poids $\left\{ P_{(S)}^{(R')} \right\}_{G} = \left\{ \begin{matrix} 0 & 0 \\ 0 & 0 \\ mg & 0 \end{matrix} \right\}_{G}$ et la poussée $\left\{ \tau_{(F)}^{(R_{5})} \right\}_{G_{2}} = \left\{ \begin{matrix} 0 & 0 \\ 0 & 0 \\ F & 0 \end{matrix} \right\}_{G_{2}}$

Par le même raisonnement que précédemment, mais en utilisant les matrices donc les angles angles ont été approximés, on obtient :

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé ERSEUS

$$\vec{R}_{\tau} = \begin{pmatrix} -F\beta \\ F\alpha \\ F \end{pmatrix}_{G_{2}}^{G_{2}} = \begin{cases} -F\beta & 0 \\ F\alpha & 0 \\ F & 0 \end{pmatrix}_{G_{2}}^{G_{2}} = \vec{M}_{G_{2}}^{(R')} + \vec{G}\vec{G}_{2} \wedge \vec{R}_{\tau}$$
$$\vec{M}_{G}^{(R')} = \vec{M}_{G_{2}}^{(R')} + \vec{G}\vec{G}_{2} \wedge \vec{R}_{\tau}$$
$$\vec{M}_{G}^{(R')} = \vec{0} + \vec{G}\vec{G}_{2} \wedge \vec{R}_{\tau}$$
$$\vec{M}_{G}^{(R')} = \begin{pmatrix} F(GA(\varphi - \alpha)) \\ F(GA(\varphi - \beta) - AB\beta) \\ F(GA(\varphi \beta - \theta\alpha) + AB\beta) \end{pmatrix}$$
$$\{\tau_{(F)}^{(R')}\}_{G} = \begin{cases} -F\beta & F(GA(\varphi - \alpha) \\ F\alpha & F(GA(\varphi - \beta) - AB\beta) \\ F & F(GA(\varphi \beta - \theta\alpha) + AB\beta) \end{pmatrix}_{G} \end{cases}$$

En tenant compte des approximations, le torseur $\sum \vec{F}_{ext}$ est le suivant :

 $\sum \vec{F}_{ext} = \begin{cases} 0 & 0\\ 0 & 0\\ mg & 0 \\ \end{bmatrix}_{G} + \begin{cases} -F\beta & F(GA(\varphi - \alpha))\\ F\alpha & F(GA(\theta - \beta) - AB\beta)\\ F & F(GA(\varphi\beta - \theta\alpha) + AB\beta) \\ \end{bmatrix}_{G}$ Calcul de $\left\{ \boldsymbol{D}_{(S)}^{(\boldsymbol{R}')} \right\}_{G}$

Par définition on sait que :

$$\left\{D_{(S)}^{(R')}\right\}_{G} = \left\{\begin{matrix}\vec{A}_{(S)}^{(R')}(G)\\\vec{\delta}_{(S)}^{(R')}(G)\end{matrix}\right\}_{G}$$

Avec

$$\vec{A}_{(S)}^{(R')}(G) = \frac{d^{(R')}\vec{P}_{(S)}^{(R')}(G)}{dt} = m\vec{a}_{(S)}^{(R')}(G) = m\frac{d^{(R')}\vec{v}_{(S)}^{(R')}(G)}{dt}$$
$$\vec{A}_{(S)}^{(R')}(G) = \begin{cases} -F\beta \\ F\alpha \\ mg + F \end{cases}_{R'} = m\vec{a}_{(S)}^{(R')}(G)$$

Ce qui nous permet d'exprimer l'accélération :

$$\vec{a}_{(S)}^{(R')}(G) = \begin{cases} \dot{u} = \frac{Fx}{m} \\ \dot{v} = \frac{Fy}{m} \\ \dot{w} = \frac{Fz}{m} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 72 sur 97

$$\vec{a}_{(S)}^{(R')}(G) = \frac{1}{m} \begin{cases} -F\beta \\ F\alpha \\ mg + F \end{cases}_{R'}$$

Et avec :

$$\vec{\delta}_{(S)}^{(R')}(G) = \frac{d^{(R')}\vec{\sigma}_{(S)}^{(R')}(G)}{dt} = I_{(S)}^{(R')}\frac{d^{(R')}\vec{\Omega}_{(S)}^{(R')}(G)}{dt}$$
$$\vec{\delta}_{(S)}^{(R')}(G) = I_{(S)}^{(R')}\frac{d^{(R')}\vec{\Omega}_{(S)}^{(R')}(G)}{dt} = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}_{R'} \begin{pmatrix} \dot{p}\\ \dot{q}\\ \dot{r} \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx}\dot{p}\\ I_{yy}\dot{q}\\ I_{zz}\dot{r} \end{pmatrix}_{R'}$$

D'après le FPD :

$$\vec{\delta}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx}\dot{p} \\ I_{yy}\dot{q} \\ I_{zz}\dot{r} \end{pmatrix}_{R'} = \begin{pmatrix} F(GA(\varphi - \alpha)) \\ F(GA(\theta - \beta) - AB\beta) \\ F(GA(\varphi\beta - \theta\alpha) + AB\beta) \end{pmatrix}_{R'}$$

Cette égalité nous permet de déterminer l'expression de $\vec{\Omega}_{(S)}^{(R')}(G)$, l'accélération angulaire :

$$\vec{\dot{\Omega}}_{(S)}^{(R')}(G) = \begin{cases} \dot{p} = \frac{F(GA(\varphi - \alpha))}{I_{xx}} \\ \dot{q} = \frac{F(GA(\theta - \beta) - AB\beta)}{I_{yy}} \\ \dot{r} = \frac{F(GA(\varphi\beta - \theta\alpha) + AB\beta)}{I_{zz}} \end{cases}_{R'}$$

Nous avons donc, en tenant compte des approximations des angles, le torseur dynamique suivant :

$$\left\{ D_{(S)}^{(R')} \right\}_{G} = \begin{cases} \begin{pmatrix} -F\beta \\ F\alpha \\ mg + F \end{pmatrix}_{R'} \\ \begin{pmatrix} F(GA(\varphi - \alpha)) \\ F(GA(\theta - \beta) - AB\beta) \\ F(GA(\varphi\beta - \theta\alpha) + AB\beta) \end{pmatrix}_{R'} \\ \end{pmatrix}_{G}$$

DEVELOPPEMENT DU CALCUL DU MOMENT DE LA POUSSEE LORS DE L'APPROXIMATION DES PETITS ANGLES :

$$\vec{M}_{G}^{(R')} = \vec{0} + \vec{GG_{2}} \wedge \vec{R}_{\tau}$$

$$\vec{M}_{G}^{(R')} = \begin{pmatrix} -GA \theta - BG_{2} \beta \\ GA \varphi + AB \alpha + BG_{2} \alpha \\ GA + AB + BG_{2} \end{pmatrix}_{R'} \wedge \begin{pmatrix} -F\beta \\ F\alpha \\ F \end{pmatrix}_{G_{2}}$$

$$\vec{M}_{G}^{(R')} = \begin{pmatrix} F(GA \varphi + AB \alpha + BG_{2}\alpha) - F\alpha(GA + AB + BG_{2}) \\ -F\beta(GA + AB + BG_{2}) - F(-GA \theta - BG_{2} \beta) \\ F\alpha(-GA \theta - BG_{2} \beta) - (-F\beta)(GA \varphi + AB \alpha + BG_{2}\alpha) \end{pmatrix}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 74 sur 97

$$\vec{M}_{G}^{(R')} = \begin{pmatrix} F(GA\,\varphi + AB\,\alpha + BG_{2}\alpha - GA\alpha - AB\alpha - BG_{2}\alpha) \\ F(-GA\beta - AB\beta - BG_{2}\beta + GA\,\theta + BG_{2}\beta) \\ F(-GA\,\theta\alpha - BG_{2}\alpha\,\beta + GA\,\varphi\beta + AB\,\beta\alpha + BG_{2}\beta\alpha) \end{pmatrix}$$

$$\vec{M}_{G}^{(R')} = \begin{pmatrix} F(GA(\varphi - \alpha)) \\ F(GA(\theta - \beta) - AB\beta) \\ F(GA(\varphi\beta - \theta\alpha) + AB\beta) \end{pmatrix}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **75** sur **97**

Développement des calculs SATURN

Le repère R_1 est traduit dans le repère R' par le biais de la matrice S_1

$$S_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & \sin\varphi \\ 0 & -\sin\varphi & \cos\varphi \end{bmatrix}_{R'}$$

Le repère R_2 est traduit dans le repère R_1 par le biais de la matrice S_2

$$S_2 = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}_{R'}$$

Le repère R_3 est traduit dans le repère R_2 par le biais de la matrice S_3

	cosψ	$\sin\psi$	0]
$S_3 =$	$-\sin\psi$	$\cos\psi$	0
	0	0	$1_{R'}$

Le repère R_2 est traduit dans le repère R' par le biais de la matrice S_{12} , produit matriciel de S_1 avec S_2

$$S_{12} = [S_1] \times [S_2]$$

 $S_{12} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ \sin\varphi\sin\theta & \cos\varphi & \cos\theta\sin\varphi \\ \cos\varphi\sin\theta & -\sin\varphi & \cos\varphi\cos\theta \end{bmatrix}_{R'}$

Le repère R_2 est traduit dans le repère R' par le biais de la matrice S_{123} , produit matriciel de S_{12} avec S_2

$$\begin{split} S_{123} &= [S_1] \times [S_2] \times [S_3] \\ S_{123} &= [S_{12}] \times [S_3] \\ S_{123} &= \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ \sin\varphi\sin\theta & \cos\varphi & \cos\theta\sin\phi \\ \cos\varphi\sin\theta & -\sin\varphi & \cos\varphi\cos\theta \end{bmatrix}_{R'} \times \begin{bmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}_{R'} \\ S_{123} &= \begin{bmatrix} \cos\theta\cos\psi & \sin\psi & \sin\psi\cos\theta & -\sin\theta \\ \cos\psi\sin\phi\sin\theta - \cos\varphi\sin\psi & \sin\varphi\sin\theta\sin\psi + \cos\varphi\cos\psi & \cos\theta\sin\phi \\ \cos\phi\cos\psi\sin\theta + \sin\varphi\sin\psi & \cos\varphi\sin\theta\sin\psi - \cos\psi\sin\phi & \cos\varphi\cos\theta \end{bmatrix}_{R'} \end{split}$$

Le repère R_4 est traduit dans le repère R' par le biais de la matrice S_4

$$S_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}_{R'}$$

Le repère R_5 est traduit dans le repère R_4 par le biais de la matrice S_5

$$S_5 = \begin{bmatrix} \cos\beta & 0 & -\sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta \end{bmatrix}_{R'}$$

Le repère R_5 est traduit dans le repère R' par le biais de la matrice S_{45} , produit matriciel de S_4 avec S_5

 $S_{45} = [S_4] \times [S_5]$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Vecteur position :

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

ERSEUS

ERSEUS

FRSEUS

Torseur Cinématique du solide (S) au point G dans le repère R' :

$$\left\{ \mathbf{V}_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{\mathbf{w}}_{(S)}^{(R')} = \phi \, \vec{\imath} + \theta \, \vec{j_{1}} + \psi \, \vec{k_{2}} = \begin{pmatrix} \phi - \psi \sin \theta \\ \theta \cos \phi + \psi \cos \theta \sin \phi \\ -\theta \sin \phi + \psi \cos \phi \cos \theta \end{pmatrix}_{R'} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} \\ \vec{\mathbf{v}}_{(S)}^{(R')} (G) = \begin{pmatrix} (\theta \cos \phi + \psi \cos \theta \sin \phi)z - (-\theta \sin \phi + \psi \cos \phi \cos \theta)y \\ (-\theta \sin \phi + \psi \cos \phi \cos \theta)x - (\phi - \psi \sin \theta)z \\ (\phi - \psi \sin \theta)y - (\theta \cos \phi + \psi \cos \theta \sin \phi)x \end{pmatrix}_{R'} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} \\ \frac{D\acute{e}veloppement de la vitesse}{\vec{\mathbf{w}}_{(S)}^{(R')} :} \\ \vec{\mathbf{w}}_{(S)}^{(R')} = \phi \, \vec{\imath} + \theta \, \vec{j_{1}} + \psi \, \vec{k_{2}} \\ \vec{\mathbf{w}}_{(S)}^{(R')} = \phi \, \vec{\imath} + \theta \left(\begin{array}{c} 0 \\ \cos \phi \\ -\sin \phi \end{array} \right)_{R'} + \psi \left(\begin{array}{c} -\sin \theta \\ \cos \theta \sin \phi \\ \cos \phi \cos \theta \end{array} \right)_{R'} \\ \vec{\mathbf{w}}_{(S)}^{(R')} = \phi \, \vec{\imath} + \theta \left(\begin{array}{c} 0 \\ \cos \phi \end{array} \right)_{R'} + \psi \left(\begin{array}{c} -\sin \theta \\ \cos \theta \sin \phi \\ \cos \phi \cos \theta \end{array} \right)_{R'} \\ \vec{\mathbf{w}}_{(S)}^{(R')} = \begin{pmatrix} \phi - \psi \sin \theta \\ \theta \cos \phi + \psi \cos \theta \sin \phi \\ -\theta \sin \phi + \psi \cos \phi \cos \theta \end{array} \right)_{R'} \\ \vec{\mathbf{w}}_{(S)}^{(R')} = (\phi - \psi \sin \theta) \, \vec{\imath} + (\theta \cos \phi + \psi \cos \theta \sin \phi) \, \vec{\jmath} + (-\theta \sin \phi + \psi \cos \phi \cos \theta) \, \vec{k} \\ \frac{D\acute{e}veloppement de la vitesse}{V}_{(S)}^{(R')} (G) : \\ \frac{D\acute{e}veloppement de la vitesse}{V}_{(S)}^{(R')} (G) : \\ \frac{M\acute{e}thode 2 : par le théorème de Kônig}{V}_{(S)}^{(R')} \wedge \overline{OG} \\ \vec{V}_{(S)}^{(R')} (G) = \frac{d^{(R_3)}\overline{GG}}{dt} + \vec{w}_{(S)}^{(R')} \wedge \overline{OG} \\ \end{array} \right$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **79** sur **97**

$$\overrightarrow{V}_{(S)}^{(R')}(G) = \frac{d^{(R_3)}\overrightarrow{0}}{dt} + \begin{pmatrix} \dot{\varphi} - \dot{\psi}\sin\theta \\ \dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi \\ -\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta \end{pmatrix}_{R'} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{R'} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{R'} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{R'}$$

$$\overrightarrow{V}_{(S)}^{(R')}(G) = \begin{pmatrix} (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)z - (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)y \\ (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)x - (\dot{\varphi} - \dot{\psi}\sin\theta)z \\ (\dot{\varphi} - \dot{\psi}\sin\theta)y - (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)x \end{pmatrix}_{R'}$$

$$\overrightarrow{V}_{(S)}^{(R')}(G) = \begin{pmatrix} (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)z - (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)y \\ (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)x - (\dot{\varphi} - \dot{\psi}\sin\theta)z \\ (\dot{\varphi} - \dot{\psi}\sin\theta)y - (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)x \end{pmatrix}_{R'}$$

$$\overrightarrow{V}_{(S)}^{(R')}(G) = \begin{pmatrix} (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)z - (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)y \\ (\dot{\varphi} - \dot{\psi}\sin\theta)y - (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)x \end{pmatrix}_{R'}$$

Torseur Cinétique du solide (S) au point G dans le repère R' :

$$\left\{ C_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')} \left(G \right) = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} = m \begin{pmatrix} (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi) z - (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta) y \\ (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta) x - (\dot{\varphi} - \dot{\psi} \sin \theta) z \\ (\dot{\varphi} - \dot{\psi} \sin \theta) y - (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi) x \end{pmatrix}_{R'} \\ \vec{\sigma}_{(S)}^{(R')} \left(G \right) = \begin{pmatrix} I_{xx} (\dot{\varphi} - \dot{\psi} \sin \theta) \\ I_{yy} (\dot{\theta} \cos \varphi + \dot{\psi} \cos \theta \sin \varphi) \\ I_{zz} (-\dot{\theta} \sin \varphi + \dot{\psi} \cos \varphi \cos \theta) \end{pmatrix}_{R'} \end{cases}$$

<u>Développement de la résultante cinétique</u> $\vec{P}_{(S)}^{(R')}(G)$:

$$\vec{P}_{(S)}^{(R')}(G) = m \vec{V}_{(S)}^{(R')}(G)$$

$$\vec{P}_{(S)}^{(R')}(G) = m \begin{pmatrix} (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)z - (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)y \\ (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)x - (\dot{\varphi} - \dot{\psi}\sin\theta)z \\ (\dot{\varphi} - \dot{\psi}\sin\theta)y - (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)x \end{pmatrix}_{R'} = m \begin{pmatrix} u \\ v \\ W \end{pmatrix}_{R'}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **80** sur **97**

Projet 47 : Adaptation du modèle mécanique FRSEUS du Mini-Apterros $\vec{P}_{(S)}^{(R')}(G) = m\left(\left(\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi\right)z - \left(-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta\right)y\right)\vec{\iota} + m\left(\left(-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta\right)x - \left(\dot{\varphi} - \dot{\psi}\sin\theta\right)z\right)\vec{j}$ $-m\left(\left(\dot{\varphi}-\dot{\psi}\sin\theta\right)y-\left(\dot{\theta}\cos\varphi+\dot{\psi}\cos\theta\sin\varphi\right)x\right)\vec{k}$ $\vec{P}_{(S)}^{(R')}(G) = m(qz - ry)\vec{i} + m(rx - pz)\vec{j} - m(py - qx)\vec{k}$ <u>Développement du moment cinétique</u> $\vec{\sigma}_{(S)}^{(R')}(G)$: $\vec{\sigma}_{(S)}^{(R')}(G) = \bar{\bar{I}}_{(S)}^{(R')} \times \vec{w}_{(S)}^{(R')}$ $\vec{\sigma}_{(S)}^{(R')}(G) = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}_{(p')} \cdot \begin{pmatrix} p\\ q\\ r \end{pmatrix}_{(R')}$ $\vec{\sigma}_{(S)}^{(R')}(G) = I_{xx}p\vec{\iota} + I_{yy}q\vec{j} + I_{zz}r\vec{k}$ $\vec{\sigma}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx}(\dot{\varphi} - \dot{\psi}\sin\theta) \\ I_{yy}(\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi) \\ I_{zz}(-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta) \end{pmatrix}_{p'}$ $\vec{\sigma}_{(S)}^{(R')}(G) = I_{xx} (\dot{\varphi} - \dot{\psi}\sin\theta)\vec{i} + I_{yy} (\dot{\theta}\cos\varphi + \dot{\psi}\cos\theta\sin\varphi)\vec{j} + I_{zz} (-\dot{\theta}\sin\varphi + \dot{\psi}\cos\varphi\cos\theta)\vec{k}$

Torseur Dynamique du solide (S) au point G dans le repère (R'):

Page 81 sur 97

$$\begin{aligned}
\mathbf{Free} \qquad \mathbf{Free} \qquad \mathbf{Free} \qquad \mathbf{Free} \qquad \mathbf{Free} \qquad \mathbf{Free} \qquad \mathbf{Free} \\
\mathbf{F} $

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **82** sur **97**

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

 $+ I_{zz} \left(-\ddot{\theta} \sin \varphi - \dot{\theta} \dot{\varphi} \cos \varphi + \ddot{\psi} \cos \varphi \cos \theta - \dot{\psi} \dot{\varphi} \sin \varphi \cos \theta - \dot{\psi} \dot{\theta} \cos \varphi \sin \theta \right) \vec{k}$

Page 83 sur 97

FRSEUS

ERSEUS

$$\vec{\delta}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx}(\ddot{\varphi} - \ddot{\psi}\sin\theta - \dot{\psi}\dot{\theta}\cos\theta) \\ I_{yy}(\ddot{\theta}\cos\varphi + \ddot{\psi}\cos\theta\sin\varphi - \dot{\theta}\dot{\varphi}\sin\varphi - \dot{\psi}\dot{\theta}\sin\theta\sin\varphi + \dot{\psi}\dot{\varphi}\cos\theta\cos\varphi) \\ I_{zz}(-\ddot{\theta}\sin\varphi + \ddot{\psi}\cos\varphi\cos\theta - \dot{\theta}\dot{\varphi}\cos\varphi - \dot{\psi}\dot{\phi}\sin\varphi\cos\theta - \dot{\psi}\dot{\theta}\cos\varphi\sin\theta) \end{pmatrix}_{R'}$$

$$\vec{\delta}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx}\dot{p} \\ I_{yy}\dot{q} \\ I_{zz}\dot{r} \end{pmatrix}_{R'}$$

<u>Principe Fondamental de la Dynamique du solide (S) au point G dans le repère (R'):</u>

 $\sum \vec{F}_{ext} = \left\{ D_{(S)}^{(R')} \right\}_{G}$

Les actions mécaniques extérieures pouvant être observées sont le poids (directement appliqué au point G) et la force de poussée (appliquée au point B). Toutes ces actions mécaniques doivent être appliquées en un même point (ici, le point G) afin de pouvoir utiliser la deuxième loi de Newton.

Écriture du torseur du poids au point G :

$$\left\{P_{(S)}^{\left(R'\right)}\right\}_{G} = \left\{\begin{matrix} 0 & 0\\ 0 & 0\\ mg & 0 \end{matrix}\right\}_{G}$$

Écriture du torseur de la poussée au point B :

$$\left\{ \boldsymbol{\tau}_{(F)}^{(R_5)} \right\}_{B} = \left\{ \begin{matrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ F & \mathbf{0} \end{matrix} \right\}_{B} ; F \overrightarrow{\mathbf{k}_{5}} = F \begin{pmatrix} -\sin \beta \\ \cos \beta \sin \alpha \\ \cos \alpha \cos \beta \end{pmatrix}_{R'}$$
$$\left\{ \boldsymbol{\tau}_{(F)}^{(R')} \right\}_{B} = \left\{ \begin{matrix} -F\sin \beta & \mathbf{0} \\ F\cos \beta \sin \alpha & \mathbf{0} \\ F\cos \alpha \cos \beta & \mathbf{0} \end{matrix} \right\}_{B} = \left\{ \begin{matrix} X & \mathbf{0} \\ Y & \mathbf{0} \\ Z & \mathbf{0} \end{matrix} \right\}_{B}$$

Écriture du torseur de la poussée au point G :

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 84 sur 97

Projet 47 : Adaptation du modèle mécanique ERSEUS du Mini-Apterros $\vec{M}_{G}^{(R')} = \vec{M}_{B}^{(R')} + \vec{GB} \wedge \vec{R}$ $\vec{M}_{G}^{(R')} = \vec{0} + \left(l_1 \begin{pmatrix} -\sin\theta \\ \cos\theta\sin\varphi \\ \cos\varphi\cos\theta \end{pmatrix}_{P'} + l_2 \begin{pmatrix} 0 \\ \sin\alpha \\ \cos\alpha \end{pmatrix}_{R'} \right) \wedge \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{R'}$ $\vec{M}_{G}^{(R')} = \begin{pmatrix} -l_{1}\sin\theta \\ l_{1}\cos\theta\sin\varphi + l_{2}\sin\alpha \\ l_{1}\cos\varphi\cos\theta + l_{2}\cos\alpha \end{pmatrix}_{R'} \wedge \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{R'}$ $\vec{M}_{G}^{(R')} = \begin{pmatrix} Zl_{1}\cos\theta\sin\varphi + Zl_{2}\sin\alpha - Yl_{1}\cos\varphi\cos\theta - Yl_{2}\cos\alpha \\ Xl_{1}\cos\varphi\cos\theta + Xl_{2}\cos\alpha + Zl_{1}\sin\theta \\ -Yl_{1}\sin\theta - Xl_{1}\cos\theta\sin\varphi - Xl_{2}\sin\alpha \end{pmatrix}_{P'}$ $\vec{M}_{G}^{(R')} = \begin{pmatrix} Fl_{1}\cos\alpha\cos\beta\cos\theta\sin\varphi + Fl_{2}\cos\alpha\cos\beta\sin\alpha - Fl_{1}\cos\beta\sin\alpha\cos\varphi\cos\theta - Fl_{2}\cos\beta\sin\alpha\cos\alpha \\ -Fl_{1}\sin\beta\cos\varphi\cos\theta - Fl_{2}\sin\beta\cos\alpha + Fl_{1}\cos\alpha\cos\beta\sin\theta \\ -Fl_{1}\cos\beta\sin\alpha\sin\theta + Fl_{1}\sin\beta\cos\theta\sin\varphi + Fl_{2}\sin\beta\sin\alpha \end{pmatrix}$ $\vec{M}_{G}^{(R')} = \begin{pmatrix} Fl_{1}\cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi) \\ Fl_{1}(\sin\beta\cos\varphi\cos\theta + \cos\alpha\cos\beta\sin\theta) + Fl_{2}\sin\beta\cos\alpha \\ Fl_{1}(\sin\beta\cos\theta\sin\varphi - \cos\beta\sin\alpha\sin\theta) + Fl_{2}\sin\beta\sin\alpha \end{pmatrix}_{R'} = \begin{pmatrix} L \\ M \\ N \end{pmatrix}_{R'}$ $\left\{\tau_{(F)}^{(R')}\right\}_{G} = \begin{cases} X & L \\ Y & M \\ Z & N \end{cases}$ $\sum \{\tau_{ext}\} = \left\{ D_{(S)}^{(R')} \right\}_{c}$ $\left\{\tau_{(F_{poussée})}^{(R')}\right\}_{C} + \left\{P_{(S)}^{(R')}\right\}_{G} = \left\{D_{(S)}^{(R')}\right\}_{C}$ $\begin{cases} X & L \\ Y & M \\ Z & N \\ \end{bmatrix}_{G} + \begin{cases} 0 & 0 \\ 0 & 0 \\ mg & 0 \\ \end{bmatrix}_{C} = \begin{cases} m\dot{u} & I_{xx}\dot{p} \\ m\dot{v} & I_{yy}\dot{q} \\ m\dot{w} & I_{zz}\dot{r} \end{cases}$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 85 sur 97

$$\begin{cases} \dot{u} = \frac{X}{m} \\ \dot{v} = \frac{Y}{m} \\ \dot{w} = \frac{Z}{m} - g \end{cases}; \begin{cases} \dot{p} = \frac{L}{l_{xx}} \\ \dot{q} = \frac{M}{l_{yy}} \\ \dot{r} = \frac{N}{l_{zz}} \end{cases}$$

$$\begin{aligned} \dot{u} &= \frac{-F\sin\beta}{m} \\ \dot{v} &= \frac{F\cos\beta\sin\alpha}{m} \\ \dot{w} &= \frac{F\cos\alpha\cos\beta}{m} - g \end{aligned}; \begin{cases} \dot{p} &= \frac{Fl_1\cos\beta\cos\theta(\cos\alpha\sin\varphi - \sin\alpha\cos\varphi)}{I_{XX}} \\ \dot{q} &= \frac{Fl_1(\sin\beta\cos\varphi\cos\theta + \cos\alpha\cos\beta\sin\theta) + Fl_2\sin\beta\cos\alpha}{I_{YY}} \\ \dot{r} &= \frac{Fl_1(\sin\beta\cos\theta\sin\varphi - \cos\beta\sin\alpha\sin\theta) + Fl_2\sin\beta\sin\alpha}{I_{ZZ}} \end{aligned}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **86** sur **97**

ERSEUS

Approximation des petits angles :

 $\cos\varphi \simeq 1 \ et \ \sin\varphi \simeq \varphi$

 $\cos\theta\simeq 1\ et\ \sin\theta\simeq\theta$

 $\cos \alpha \simeq 1 \ et \ \sin \alpha \simeq \alpha$

 $\cos\beta \simeq 1 \ et \ \sin\beta \simeq \beta$

La rotation ψ peut être négligée car aucun mouvement de lacet ne sera généré.

Le repère R_1 est traduit dans le repère R' par le biais de la matrice S_1

	r1	0	ן0		r1	0	ך 0
$S_1 =$	0	1	φ	; $S_1^T =$	0	1	$-\varphi$
-	0	$-\varphi$	$1]_{R'}$	1	LO	φ	1] _{<i>R'</i>}

Le repère R_2 est traduit dans le repère R_1 par le biais de la matrice S_2

	[1	0	$-\theta$]		[1]	0	θ
$S_2 =$	0	1	0	; $S_2^T =$	0	1	0
	lθ	0	$1 J_R$	'	$-\theta$	0	$1 J_{R'}$

Le repère R_2 est traduit dans le repère R' par le biais de la matrice S_{12} , produit matriciel de S_1 avec S_2

 $S_{12} = [S_1] \times [S_2]$

$$S_{12} = \begin{bmatrix} 1 & 0 & -\theta \\ \varphi \theta & 1 & \varphi \\ \theta & -\varphi & 1 \end{bmatrix}_{R'}; S_{12}^T = \begin{bmatrix} 1 & \varphi \theta & \theta \\ 0 & 1 & -\varphi \\ -\theta & \varphi & 1 \end{bmatrix}_{R'}$$

Le repère R_4 est traduit dans le repère R' par le biais de la matrice S_4

	[1	0	0]		[1	0	0]
$S_4 =$	0	1	α	; $S_4^T =$	0	1	$-\alpha$
	Lo	$-\alpha$	$1 J_{R'}$		Lo	α	$1 J_{R'}$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 87 sur 97

Le repère R_5 est traduit dans le repère R_4 par le biais de la matrice S_5

$$S_5 = \begin{bmatrix} 1 & 0 & -\beta \\ 0 & 1 & 0 \\ \beta & 0 & 1 \end{bmatrix}_{R'}; S_5^T = \begin{bmatrix} 1 & 0 & \beta \\ 0 & 1 & 0 \\ -\beta & 0 & 1 \end{bmatrix}_{R'}$$

Le repère R_5 est traduit dans le repère R' par le biais de la matrice S_{45} , produit matriciel de S_4 avec S_5

$$\begin{split} S_{45} &= [S_4] \times [S_5] \\ S_{45} &= \begin{bmatrix} 1 & 0 & -\beta \\ \alpha\beta & 1 & \alpha \\ \beta & -\alpha & 1 \end{bmatrix}_{R'} ; S_{45}^T &= \begin{bmatrix} 1 & \alpha\beta & \beta \\ 0 & 1 & -\alpha \\ -\beta & \alpha & 1 \end{bmatrix}_{R'} \\ \vec{J}_1 &= S_1 \vec{J} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \varphi \\ 0 & -\varphi & 1 \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}_{R'} &= \begin{pmatrix} 0 \\ 1 \\ -\varphi \end{pmatrix}_{R'} \\ \vec{k}_1 &= S_1 \vec{k} &= \begin{bmatrix} 1 & 0 & -\theta \\ 0 & 1 & \varphi \\ \theta & -\varphi & 1 \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} &= \begin{pmatrix} 0 \\ \varphi \\ 1 \end{pmatrix}_{R'} \\ \vec{k}_2 &= S_{12} \vec{k} &= \begin{bmatrix} 1 & 0 & -\theta \\ \varphi \theta & 1 & \varphi \\ \theta & -\varphi & 1 \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} &= \begin{pmatrix} 1 \\ \varphi \theta \\ \theta \end{pmatrix}_{R'} \\ \vec{k}_2 &= S_{12} \vec{k} &= \begin{bmatrix} 1 & 0 & -\theta \\ \varphi \theta & 1 & \varphi \\ \theta & -\varphi & 1 \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} &= \begin{pmatrix} -\theta \\ \varphi \\ \theta \end{pmatrix}_{R'} \\ \vec{k}_4 &= S_4 \vec{k} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \alpha \\ 0 & -\alpha & 1 \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} &= \begin{pmatrix} 0 \\ 1 \\ -\alpha \end{pmatrix}_{R'} \\ \end{split}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 88 sur 97

$$\vec{\iota}_{5} = S_{45}\vec{\iota} = \begin{bmatrix} 1 & 0 & -\beta \\ \alpha\beta & 1 & \alpha \\ \beta & -\alpha & 1 \end{bmatrix}_{R'} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_{R'} = \begin{pmatrix} 1 \\ \alpha\beta \\ \beta \end{pmatrix}_{R'}$$
$$\vec{k}_{5} = S_{45}\vec{k} = \begin{bmatrix} 1 & 0 & -\beta \\ \alpha\beta & 1 & \alpha \\ \beta & -\alpha & 1 \end{bmatrix}_{R'} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{R'} = \begin{pmatrix} -\beta \\ \alpha \\ 1 \end{pmatrix}_{R'}$$

Vecteur position :

 $\begin{aligned} \overrightarrow{OG} &= \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{R'} \\ \overrightarrow{GA} &= l_1 \overrightarrow{k_2} = l_1 \begin{pmatrix} -\theta \\ \varphi \\ 1 \end{pmatrix}_{R'} \\ \overrightarrow{AB} &= l_2 \overrightarrow{k_4} = l_2 \begin{pmatrix} 0 \\ \alpha \\ 1 \end{pmatrix}_{R'} \\ \overrightarrow{GB} &= \overrightarrow{GA} + \overrightarrow{AB} = l_1 \overrightarrow{k_2} + l_2 \overrightarrow{k_4} = l_1 \begin{pmatrix} -\theta \\ \varphi \\ 1 \end{pmatrix}_{R'} + l_2 \begin{pmatrix} 0 \\ \alpha \\ 1 \end{pmatrix}_{R'} = \begin{pmatrix} l_1 \theta \\ -l_1 \varphi - l_2 \alpha \\ -l_1 - l_2 \end{pmatrix}_{R'} \end{aligned}$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 89 sur 97

Torseur Cinématique du solide (S) au point G dans le repère R :

$$\left\{ V_{(S)}^{(R')} \right\}_{G} = \begin{cases} \vec{w}_{(S)}^{(R')} = \dot{\phi} \, \vec{\imath} + \dot{\theta} \, \vec{j_{1}} + \dot{\psi} \, \vec{k_{2}} = \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ -\dot{\theta} \phi \end{pmatrix}_{R'} = \begin{pmatrix} p \\ q \end{pmatrix}_{R'} \\ \vec{v}_{(S)}^{(R')} (G) = \begin{pmatrix} \dot{\theta} z + \dot{\theta} \phi y \\ -\dot{\theta} \phi x - \dot{\phi} z \\ \dot{\phi} y - \dot{\theta} x \end{pmatrix}_{R'} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} \\ \frac{D\acute{e}veloppement de la vitesse}{\vec{w}_{(S)}^{(R')} :} \\ \vec{w}_{(S)}^{(R')} = \dot{\phi} \, \vec{\imath} + \dot{\theta} \, \vec{j_{1}} \\ \vec{w}_{(S)}^{(R')} = \dot{\phi} \, \vec{\imath} + \dot{\theta} \, \vec{j_{1}} \\ \vec{w}_{(S)}^{(R')} = \dot{\phi} \, \vec{\imath} + \dot{\theta} \, \vec{j_{1}} \\ -\phi \end{pmatrix}_{R'} \\ \vec{w}_{(S)}^{(R')} = \dot{\phi} \, \vec{\imath} + \dot{\theta} \, \vec{j} - \dot{\theta} \phi \, \vec{k} \\ \frac{D\acute{e}veloppement de la vitesse}{\vec{V}_{(S)}^{(R')} (G) :} \\ \frac{M\acute{e}thode 2 : par le théorème de König}{\vec{V}_{(S)}^{(R')} \wedge \overrightarrow{OG}} \\ \vec{V}_{(S)}^{(R')} (G) = \vec{V}_{(S)}^{(R_{3})} (G) + \vec{w}_{(S)}^{(R')} \wedge \overrightarrow{OG} \\ \vec{V}_{(S)}^{(R')} (G) = \frac{d^{(R_{3})} \overrightarrow{GG}}{dt} + \vec{w}_{(S)}^{(R')} \wedge \overrightarrow{OG} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **90** sur **97**

ERSEUS

$$\vec{\mathbf{V}}_{(S)}^{(R')}(G) = \frac{d^{(R_3)}\vec{\mathbf{0}}}{dt} + \begin{pmatrix} \dot{\boldsymbol{\varphi}} \\ \dot{\boldsymbol{\theta}} \\ -\dot{\boldsymbol{\theta}}\boldsymbol{\varphi} \end{pmatrix}_{R'} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{R'} = \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{r} \end{pmatrix}_{R'} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{R'}$$

$$\vec{V}_{(S)}^{(R')}(G) = \begin{pmatrix} -\dot{\theta}\varphi x - \dot{\varphi}z \\ \dot{\varphi}y - \dot{\theta}x \end{pmatrix}_{R'} = \begin{pmatrix} rx - pz \\ py - qx \end{pmatrix}_{R'}$$
$$\vec{V}_{(S)}^{(R')}(G) = (qz - ry)\vec{\imath} + (rx - pz)\vec{\jmath} + (py - qx)\vec{k}$$
$$\vec{V}_{(S)}^{(R')}(G) = (\dot{\theta}z + \dot{\theta}\varphi y)\vec{\imath} + (-\dot{\theta}\varphi x - \dot{\varphi}z)\vec{\jmath} + (\dot{\varphi}y - \dot{\theta}x)\vec{k}$$

Torseur Cinétique du solide (S) au point G dans le repère R' :

$$\left\{C_{(S)}^{(R')}\right\}_{G} = \begin{cases} \vec{P}_{(S)}^{(R')}(G) = m \begin{pmatrix} \dot{\theta}z + \dot{\theta}\varphi y \\ -\dot{\theta}\varphi x - \dot{\varphi}z \\ \dot{\varphi}y - \dot{\theta}x \end{pmatrix}_{R'} = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'} \\ \vec{\sigma}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx}\dot{\varphi} \\ I_{yy}\dot{\theta} \\ -I_{zz}\dot{\theta}\varphi \end{pmatrix}_{R'} \end{cases}$$

<u>Développement de la résultante cinétique</u> $\vec{P}_{(S)}^{(R')}(G)$:

$$\vec{P}_{(S)}^{(R')}(G) = m \vec{V}_{(S)}^{(R')}(G)$$
$$\vec{P}_{(S)}^{(R')}(G) = m \begin{pmatrix} \dot{\theta}z + \dot{\theta}\varphi y \\ -\dot{\theta}\varphi x - \dot{\varphi}z \\ \dot{\varphi}y - \dot{\theta}x \end{pmatrix}_{R'} = m \begin{pmatrix} u \\ v \\ w \end{pmatrix}_{R'}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **91** sur **97**

Projet 47 : Adaptation du modèle mécanique
du Mini-Apterros
$$\vec{P}_{(S)}^{(R')}(G) = m(\dot{\theta}z + \dot{\theta}\varphi y)\vec{i} + m(-\dot{\theta}\varphi x - \dot{\varphi}z)\vec{j} - m(\dot{\varphi}y - \dot{\theta}x)\vec{k}$$
$$\vec{P}_{(S)}^{(R')}(G) = m(qz - ry)\vec{i} + m(rx - pz)\vec{j} - m(py - qx)\vec{k}$$

Développement du moment cinétique $\vec{\sigma}_{(S)}^{(R')}(G)$:
 $\vec{\sigma}_{(S)}^{(R')}(G) = \vec{I}_{(S)}^{(R')} \times \vec{w}_{(S)}^{(R')}$
 $\vec{\sigma}_{(S)}^{(R')}(G) = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}_{(R')} \cdot \begin{pmatrix} p \\ q \\ r \end{pmatrix}_{(R')}$
 $\vec{\sigma}_{(S)}^{(R')}(G) = I_{xx}p\vec{i} + I_{yy}q\vec{j} + I_{zz}r\vec{k}$
 $\vec{\sigma}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx}\dot{\varphi} \\ I_{yy}\dot{\theta} \\ -I_{zz}\dot{\varphi}\varphi \end{pmatrix}_{R}$

 $\vec{\sigma}_{(S)}^{(R')}(G) = I_{xx} \dot{\boldsymbol{\varphi}} \vec{\boldsymbol{\iota}} + I_{yy} \dot{\boldsymbol{\theta}} \vec{\boldsymbol{j}} - I_{zz} \dot{\boldsymbol{\theta}} \boldsymbol{\varphi} \vec{\boldsymbol{k}}$

<u>Torseur Dynamique du solide (S) au point G dans le repère (R') :</u>

$$\left\{ \boldsymbol{D}_{(S)}^{(R')} \right\}_{\boldsymbol{G}} = \begin{cases} \vec{A}_{(S)}^{(R')} \left(\boldsymbol{G}\right) = \boldsymbol{m} \begin{pmatrix} \ddot{\boldsymbol{\theta}}(z + \varphi y) + \dot{\boldsymbol{\theta}}(\dot{z} + \dot{\varphi} y + \varphi \dot{y}) \\ -\ddot{\boldsymbol{\theta}}\varphi x - \ddot{\boldsymbol{\varphi}} z - \dot{\boldsymbol{\theta}}(\dot{\varphi} x + \varphi \dot{x}) - \dot{\varphi} \dot{z} \\ \ddot{\varphi} y - \ddot{\boldsymbol{\theta}} x + \dot{\varphi} \dot{y} + \dot{\boldsymbol{\theta}} \dot{x} \end{pmatrix}_{R'} = \boldsymbol{m} \begin{pmatrix} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{v}} \\ \dot{\boldsymbol{w}} \end{pmatrix}_{R'} \\ \vec{\delta}_{(S)}^{(R')} \left(\boldsymbol{G}\right) = \begin{pmatrix} I_{xx} \ddot{\boldsymbol{\varphi}} \\ I_{yy} \ddot{\boldsymbol{\theta}} \\ I_{zz} \left(-\ddot{\boldsymbol{\theta}}\varphi - \dot{\boldsymbol{\theta}} \dot{\varphi}\right) \end{pmatrix}_{R'} = \begin{pmatrix} I_{xx} \dot{\boldsymbol{p}} \\ I_{yy} \dot{\boldsymbol{q}} \\ I_{zz} \dot{\boldsymbol{r}} \end{pmatrix}_{R'} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **92** sur **97**

FRSEUS

$$\vec{\delta}_{(S)}^{(R')}(G) = I_{xx} \ddot{\boldsymbol{\varphi}} \vec{\boldsymbol{i}} + I_{yy} \ddot{\boldsymbol{\theta}} \vec{\boldsymbol{j}} + I_{zz} \left(-\ddot{\boldsymbol{\theta}} \boldsymbol{\varphi} - \dot{\boldsymbol{\theta}} \dot{\boldsymbol{\varphi}} \right) \vec{\boldsymbol{k}}$$
$$\vec{\delta}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx} \ddot{\boldsymbol{\varphi}} \\ I_{yy} \ddot{\boldsymbol{\theta}} \\ I_{zz} \left(-\ddot{\boldsymbol{\theta}} \boldsymbol{\varphi} - \dot{\boldsymbol{\theta}} \dot{\boldsymbol{\varphi}} \right) \end{pmatrix}_{R'}$$
$$\vec{\delta}_{(S)}^{(R')}(G) = \begin{pmatrix} I_{xx} \dot{p} \\ I_{yy} \dot{q} \\ I_{zz} \dot{r} \end{pmatrix}_{R'}$$

Principe Fondamental de la Dynamique du solide (S) au point G dans le repère (R') :

 $\sum \vec{F}_{ext} = \left\{ D_{(S)}^{(R')} \right\}_{G}$

Les actions mécaniques extérieures pouvant être observées sont le poids (directement appliqué au point G) et la force de poussée (appliquée au point B). Toutes ces actions mécaniques doivent être appliquées en un même point (ici, le point G) afin de pouvoir utiliser la deuxième loi de Newton.

Écriture du torseur du poids au point G :

$$\left\{P_{(S)}^{(R')}\right\}_{G} = \left\{\begin{matrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ mg & \mathbf{0} \\ g \end{matrix}\right\}_{G}$$

Écriture du torseur de la poussée au point B :

 $\left\{ \boldsymbol{\tau}_{(F)}^{(R_5)} \right\}_{B} = \begin{cases} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ F & \mathbf{0} \end{cases}_{B}; F \overrightarrow{\mathbf{k}_{5}} = F \begin{pmatrix} -\beta \\ \alpha \\ 1 \end{pmatrix}_{R'}$ $\left\{ \boldsymbol{\tau}_{(F)}^{(R')} \right\}_{B} = \begin{cases} -F\beta & \mathbf{0} \\ F\alpha & \mathbf{0} \\ F & \mathbf{0} \end{pmatrix}_{B} = \begin{cases} X & \mathbf{0} \\ Y & \mathbf{0} \\ Z & \mathbf{0} \end{pmatrix}_{B}$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page 94 sur 97

Écriture du torseur de la poussée au point G :

$$\begin{split} \overrightarrow{M}_{G}^{(R')} &= \overrightarrow{M}_{B}^{(R')} + \overrightarrow{GB} \wedge \overrightarrow{R} \\ \overrightarrow{M}_{G}^{(R')} &= \overrightarrow{0} + \left(l_{1} \begin{pmatrix} -\theta \\ \varphi \\ 1 \end{pmatrix}_{R'} + l_{2} \begin{pmatrix} 0 \\ \alpha \\ 1 \end{pmatrix}_{R'} \right) \wedge \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{R'} \\ \overrightarrow{M}_{G}^{(R')} &= \begin{pmatrix} -l_{1}\theta \\ l_{1}\varphi + l_{2}\alpha \\ l_{1} + l_{2} \end{pmatrix}_{R'} \wedge \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{R'} \\ \overrightarrow{M}_{G}^{(R')} &= \begin{pmatrix} Zl_{1}\varphi + Zl_{2}\alpha - Yl_{1} - Yl_{2} \\ Xl_{1} + Xl_{2} + Zl_{1}\theta \\ -Yl_{1}\theta - Xl_{1}\varphi - Xl_{2}\alpha \end{pmatrix}_{R'} \\ \overrightarrow{M}_{G}^{(R')} &= \begin{pmatrix} Fl_{1}\varphi + Fl_{2}\alpha - Fl_{1}\alpha - Fl_{2}\alpha \\ -Fl_{1}\beta - Fl_{2}\beta + Fl_{1}\theta \\ -Fl_{1}\theta\alpha + Fl_{1}\varphi\beta + Fl_{2}\alpha\beta \end{pmatrix}_{R'} \\ \overrightarrow{M}_{G}^{(R')} &= \begin{pmatrix} Fl_{1}(\varphi - \alpha) \\ Fl_{1}(\varphi - \beta) - Fl_{2}\beta \\ Fl_{1}(\varphi \beta - \theta\alpha) + Fl_{2}\alpha\beta \end{pmatrix}_{R'} = \begin{pmatrix} L \\ M \\ N \end{pmatrix}_{R'} \\ &\{ \tau_{(F)}^{(R')} \}_{G} = \begin{cases} X & L \\ Y & M \\ Z & N \end{pmatrix}_{G} \\ &\sum \overrightarrow{F}_{ext} = \{ D_{(S)}^{(R')} \}_{G} \\ &\{ \tau_{(F)}^{(R')} \}_{G} + \{ P_{(S)}^{(R')} \}_{G} = \{ D_{(S)}^{(R')} \}_{G} \end{split}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **95** sur **97**

$$\begin{cases} X & L \\ Y & M \\ Z & N \\ \end{bmatrix}_{G} + \begin{cases} 0 & 0 \\ 0 & 0 \\ mg & 0 \\ \end{bmatrix}_{G} = \begin{cases} m\dot{u} & I_{xx}\dot{p} \\ m\dot{v} & I_{yy}\dot{q} \\ m\dot{w} & I_{zz}\dot{r} \\ \end{bmatrix}_{G} \\ \begin{cases} \dot{u} = \frac{X}{m} \\ \dot{v} = \frac{Y}{m} \\ \dot{v} = \frac{Y}{m} \\ \dot{w} = \frac{Z}{m} - g \end{cases}; \begin{cases} \dot{p} = \frac{L}{I_{xx}} \\ \dot{q} = \frac{M}{I_{yy}} \\ \dot{r} = \frac{N}{I_{zz}} \end{cases}$$

$$\begin{cases} \dot{\boldsymbol{u}} = \frac{-F\beta}{m} \\ \dot{\boldsymbol{v}} = \frac{F\alpha}{m} \\ \dot{\boldsymbol{w}} = \frac{F}{m} - \boldsymbol{g} \end{cases}; \begin{cases} \dot{\boldsymbol{p}} = \frac{Fl_1(\boldsymbol{\varphi} - \alpha)}{l_{\chi\chi}} \\ \dot{\boldsymbol{q}} = \frac{Fl_1(\boldsymbol{\theta} - \beta) - Fl_2\beta}{l_{\gamma\gamma}} \\ \dot{\boldsymbol{r}} = \frac{Fl_1(\boldsymbol{\varphi} \beta - \theta\alpha) + Fl_2\alpha\beta}{l_{ZZ}} \end{cases}$$

M. Alemany, M. Awenenty Mme Bérezné, M. Trouvé

Années 2018 - 2019

Page **96** sur **97**

Bibliographie

PERSEUS - *Projet étudiant de recherche spatiale européen universitaire et scientifique* [en ligne], disponible sur : <<u>https://perseus.fr/fr/></u> L'AVIONNEUR - *Les hélices d'un avion* [en ligne], disponible sur : <<u>https://www.lavionnaire.fr/HeliceHelices.php</u>> (Consulté le 12/12/2018) GILBERT-PERNOT - *Calcul et fabrication d'une hélice* [en ligne], disponible sur : <<u>http://www.gilbert-pernot.fr/helice_calcul_fabrication.html</u>> (Consulté le 12/12/2018) PRIVATEJETFINDER - *Hélices contra-rotatives, technologie prometteuse pour les avions privés* [en ligne], disponible sur : <<u>http://blogfr.privatejetfinder.com/helices-contra-rotatives/</u>> (Consulté le 12/12/2018)

AVIALOGS - How it works: Contra-rotating propellers [en ligne], disponible sur : <<u>http://www.avialogs.com/index.php/avialogs/how-it-works-contra-rotating-propellers.html</u>> (Consulté le 14/01/2019)

Hinda Hamrouchi (2015-2016) - *Modélisation de contrôle d'un mini-aéronef à propulsion vectorielle* Université Paris-Saclay. Université d'Evry Val d'Essonne. Laboratoire de mécanique et d'énergie d'Evry.

Arnaud Koehl. *Modélisation, observation et commande d'un drone miniature à birotor coaxial* Automatique / Robotique. Université Henri Poincaré - Nancy I, 2012. Français.

RSEUS