PRINCIPE DE RÉCURRENCE

- il semble que formule
- on vérifie au premier range <u>u</u>x
- si à un range n donné, on a *formule*, alors au rang suivant à (arriver à u_{n+1})
- la formule <u>formule</u> est vrai au premier $\underline{u}_{\mathbf{x}}$ et est héréditaire donc la formule est vraie pour tout $\mathbf{n} \in \mathbb{N}$

SENS DE VARIATION

 $\begin{array}{ll} \text{croissante} \rightarrow & u_{n+1} > u_n \\ \text{décroissante} \rightarrow & u_{n+1} < u_n \\ & => \text{ étude du signe de } u_{n+1} - u_n \end{array}$

MAJORANTE/ MINORANTE

suite

- arithmétique: $u_n = u_p + r^*(n-p)$ où $u_{n+1} = u_n + r$
- géométrique: $u_n = u_p^* q^{n-p}$ où $u_{n+i} = u_n^* q$

FORMULES DE SOMMES

$$1+2+2+...+n = \frac{n*(n+1)}{2}$$

 $1+q+q^2+q^3+...+q^n = \frac{1-q^{n+1}}{1-q}$

PROBABILITÉ CONDITIONNELLE

- probabilité de A sachant que B est réalisé: $P_B(A) = \frac{P(A \cap B)}{P(B)}$
- indépendance de deux événements: quand $P(A \cap B) = P(A)*P(B)$ alors $P_B(A)=P(A)$ et $P_A(B)=P(B)$

CONTINUITÉ

- si *f* est continue alors *f* est représentée par une courbe
- si f est discontinue alors f est représentée par plusieurs courbes, on utilise cette discontinuité pour les limites : $\lim_{x\to a} f(x) = k$ où a est la discontinuité
- si $\lim_{x\to a} g(x) = 0$ et g(x) > 0 alors $\lim_{x\to a} g(x) = 0^+$
- si $\lim_{x \to a} g(x) = 0$ et g(x) < 0 alors $\lim_{x \to a} g(x) = 0^{-1}$

LIMITE D'UNE SUITE

	l.	n ^p où	p∈ %*	1/np où n = N*	Ε.
u _n	K	p pair	p impaire	1/n ^p où p∈ℕ*	\sqrt{n}
$\lim_{n\to+\infty} =$	k	+ ∞		0	+ ∞
$\lim_{n\to-\infty} =$	k	+ ∞	- ∞	0	

<u>pour q"</u>:

$$q>1$$
 $\lim_{n\to+\infty} q^n = +\infty$

$$-1 < q < 1 \lim_{n \to +\infty} q^n = 0$$

$$q=1$$
 $\lim_{n\to+\infty} q^n = 1$

q<1 $\lim_{n\to +\infty} q^n \to \text{impossible}$

- cos et sin n'admettent pas de limite

f(x)	1/x ⁿ avec n pair	1/x ⁿ avec n impair
$\lim_{x \to 0 \ et \ x < 0} =$	+ ∞	- ∞
$\lim_{x \to 0 \ et \ x > 0} =$	+ ∞	+ ∞

-	- somme de limite:										
	ł	ł	ł	+ ∞	- ∞		- ∞				
+	ℓ'	+ ∞	- ∞	+∞	<u>-</u> ∞			+ ∞			
=	{+{} '	+∞	- ∞	+∞	+ ∞			Ø			
-	- produ	uit de lin	nite:								
	Ł	ℓ> 0	ℓ>0	{<0	ℓ<0	+ ∞	+ ∞		- ∞		0
×	ℓ'	+∞	- ∞	+ ∞	- ∞	+ ∞	- ∞	- ∞		+ ∞ /- ∞	
=	l*l '	+ ∞	- ∞	- ∞	+∞	+ ∞	+ \infty - \infty + \infty			Ø	
-	- quoti	ent de li	imite:								
	ł	ł	+∞	- ∞	+ ∞	- ∞	+/-∞	ℓ>0 oι	ı +∞	{<() ou -∞
÷	ℓ'	+/-∞	ℓ>0	ℓ>0	ℓ<0	ℓ<0	+/-∞	0+	0-	0+	0-
=	<u>ℓ</u>	0	+∞	- ∞	-∞	+ ∞	Ø	+ ∞	$-\infty$	$-\infty$	$+\infty$

THÉORÈME DE COMPARAISON

- $\sin \lim_{n \to +\infty} u_n = +\infty$ et $u_n \le v_n$ alors $\lim_{n \to +\infty} v_n = +\infty$
- si $\lim_{n\to+\infty} u_n = -\infty$ et $u_n \ge v_n$ alors $\lim_{n\to+\infty} v_n = -\infty$

THÉORÈME DES GENDARMES

$$\lim_{n\to +\infty} u_n = \ell \\ + u_n \le w_n \le v_n = \lim_{n\to +\infty} w_n = \ell$$

$$\lim_{n\to +\infty} v_n = \ell$$

THÉORÈME

- si la suite est <u>croissante</u> et <u>n'a pas de limite</u>, alors elle diverge vers +∞
- si la suite est <u>décroissante</u> et <u>n'a pas de limite</u>, alors elle diverge vers -∞
- si la suite est <u>croissante</u> et $\lim_{n \to +\infty} v_n = \ell$, alors v_n est majorée par $\ell \Leftrightarrow v_n < \ell$

- si la suite est <u>décroissante</u> et $\lim_{n \to +\infty} v_n = \ell$, alors v_n est minorée par $\ell \Leftrightarrow v_n > \ell$

composition

si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{x \to b} g(X) = c$, alors $\lim_{x \to a} g(f(x)) = c$

ASYMPTOTES

$\lim_{x \to +\infty} f(x) = a$	\rightarrow	$y = a$ comme asymptote horizontale au voisinage de $+\infty$
$\lim_{x \to -\infty} f(x) = a$	\rightarrow	$y = a$ comme asymptote horizontale au voisinage de $-\infty$
$\lim_{x \to b} f(x) = +\infty$	\rightarrow	x = b comme asymptote horizontale au voisinage de b
$\lim_{x \to b} f(x) = -\infty$	\rightarrow	x = b comme asymptote horizontale au voisinage de b

DÉRIVATION

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
, si $x = a + h$ alors $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

 \rightarrow la tangente en a a pour équation y = f'(a)(x - a) + f(a)

DÉRIVÉ ET PRIMITIVE

primitive: $F(x)$	f(x)	dérivé: f'(x)	domaine de validité
k (une constante)	0	0	R
$\frac{1}{n+1}X^{n+1}$	x ⁿ (n∈ℕ*)	n <i>x</i> ⁿ⁻¹	R
ln(x)	$\frac{1}{x}$	-1/x ²]0;+∞[
	\sqrt{x}	$\frac{1}{2\sqrt{\kappa}}$]0;+∞[
$2\sqrt{x}$	$\frac{1}{\sqrt{x}}$]0;+∞[
$-\cos(x)$	sin(x)	cos(x)	R
sin(x)	cos(x)	$-\sin(x)$	R

NB: <u>UNE</u> primitive $f(x) \rightarrow F(x) \neq \underline{\text{TOUTES}} \text{ les primitive} f(x) \rightarrow F(x) + k$

- opération de dérivé						
(u+v)'=u'+v'	(u-v)'=u'-v'	(ku)'=ku'				
(uv)' = u'v + uv'	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$				
$(u^n)' = nu'u^{n-1}$	$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$	(sin(u))' = u'cos(u)				
$(\cos(u))' = -u'\sin(u)$						
- opération de primitive \triangle si toutes les primitives sont demandées, on ajoute $+$ k						
$u'e^u \rightarrow e^u$	$u'u^n \to \frac{1}{n+1}n^{n+1}$	$\frac{u'}{u^2} \rightarrow -\frac{1}{u}$				

$\frac{u'}{\sqrt{u}} \rightarrow 2\sqrt{u}$	$\frac{u'}{u} \to ln(x)$	$u'sin(u) \rightarrow -cos(u)$
$u'cos(u) \rightarrow sin(u)$		

- sens de variation			
$f \nearrow sur\ I$	⇔	$f'(x) \ge 0$	
$f \vee \operatorname{sur} I$	⇔	$f'(x) \le 0$	pour $x \in I$
$f \rightarrow \text{sur } I$	⇔	f'(x) = 0	

 \rightarrow étudier le sens de variation de f = étudier le signe de f'(x)

ÉTUDE D'UNE FONCTION

- valeur interdite s'il y a un dénominateur
- calculer des <u>limites</u> en $-\infty$, $+\infty$ et aux valeurs interdites
- faire la <u>dérivée</u>
- faire le tableau de signes de la dérivée
- en déduire le <u>sens de variation</u> de la fonction (et vérifier les limites)

THÉORÈME DE LA VALEUR INTERMÉDIAIRE

- on veut f(x) = a
- il faut dire:
 - f est continue car dérivable
 - f est strictement croissante (monotone) sur [y;z]
 - $a \in [b; c]$
- <u>alors</u> 'après le théorème de la valeur intermédiaire, l'équation f(x) = a admet une unique solution sur [y;z]

EXPONENTIELLE

- f' = f et f(0) = 1
- $exp(1) \approx 2.718281828459$

x	$-\infty$		0		$+\infty$
exp'(x) = exp(x)		+	1	+	
exp(x)	0	7	1	1	$+\infty$

- propriétés		
$exp(a+b) = exp(a) \times exp(b)$	$exp(a-b) = \frac{exp(a)}{exp(b)}$	$exp(a \times b) = (exp(a))^b$
$e^{-a} = \frac{1}{e^a}$	$e^{1/2} = \sqrt{e}$	$(eu)'=u'e^u$

$e^a = e^b \Leftrightarrow a = b$	$e^a > e^b \Leftrightarrow a > b$	$e^a < e^b \Leftrightarrow a < b$
$\lim_{x\to-\infty}e^x=0$	$\lim_{x \to +\infty} e^x = +\infty$	$\lim_{x \to -0} \frac{e^{x}-1}{x} = 1$
$\lim_{x \to -\infty} x e^x = 0$	$\lim_{x \to -\infty} \frac{e^x}{x} = +\infty$	$x \rightarrow -0$ x

LOGARITHME NÉPÉRIEN

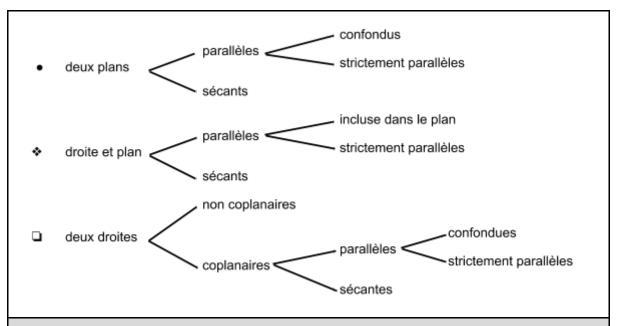
- fonction réciproque de l'exponentielle
- $e^b = a // \ln a = b$

x	0		+ ∞
exp'(x) =		+	
exp(x)	$-\infty$	7	+ ∞

- propriétés		
ln(exp(a)) = a	exp(ln(a)) = a	$(ln(u))' = \frac{u'}{u}$
ln(ab) = exp(a) + exp(b)	$ln(\frac{a}{b}) = ln(a) - ln(b)$	$ln(a^n) = n \ ln(a)$
$\lim_{x \to -0} \ln(x) = -\infty$	$\lim_{x\to +\infty} ln(x) = +\infty$	$\lim_{h \to -0} \frac{\ln(1+h)}{h} = 1$
$\lim_{x \to 0} x ln(x) = 0$	$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0^+$	$h \rightarrow -0$ n

DROITES ET PLANS DANS L'ESPACE

- 1	positions:				
-----	------------	--	--	--	--



- théorèmes de parallélisme ($D \rightarrow$ droite/ $P \rightarrow$ plan/ A \rightarrow point)
 - deux droites:
- D et A, D' existe telle que D//D' et A $\subseteq D'$
- D//D' et $\Delta//D' \rightarrow D//D'//\Delta$
- D//D' et P coupe $D \rightarrow P$ coupe D'
 - droite et plan:
- D//P, Δ existe telle que $\Delta//D$ et $\Delta \subseteq P$
- D//D' et $D//P \rightarrow D'//P$
- D//P, D//P' et P et P' sécant en $\Delta \rightarrow D//\Delta$
 - plans
- P et A, il existe un unique P' tel que P'//P et A $\subseteq P'$
- P//P' et $P//P'' \rightarrow P//P'//P''$
- P//P', D coupe l'un et l'autre
- P//P' et $P//D \rightarrow P//P'//D$
- P//P' et P'' coupe l'un et l'autre \rightarrow intersections parallèles
- D et D' sécantes sur P, D//P' et $D'//P' \rightarrow P//P'$
- orthogonalité
- \star $\vec{AB} = \vec{u}$ et $\vec{AC} = \vec{v}$, \vec{u} et \vec{v} sont orthogonaux si $(AB) \perp (AC)$
- ★ D et D' sont orthogonales $\Leftrightarrow D \perp D'$ et D et D' sont sécantes
- \bigstar D orthogonale à $P \Leftrightarrow D$ orthogonale à deux droites sécantes de P
- \star points à équidistance de A et B = le plan médiateur P (au milieu de [AB])
- \bigstar P et P'orthogonaux \Leftrightarrow D \in P et $D \perp P'$
- $ightharpoonup D \perp P \text{ et } D \perp P \rightarrow D / / D' \Leftrightarrow D / / D' \text{ et } D \perp P \rightarrow D' \perp P$
- ightharpoonup P//P' et $D \perp P \rightarrow D \perp P'$

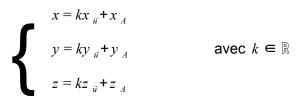
- \rightarrow $\vec{u}(x;y;z)$, $\vec{v}(x';y';z')$, $A(x_A;y_A;z_A)$ et $B(x_B;y_B;z_B)$
 - produit scalaire: $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$
 - norme: $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$
 - longueur: $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$
- équation de plan
 - \Box \vec{n} , normal à P quand \vec{n} orthogonal à deux vecteurs non colinéaires de P
 - \square $P//P' \Leftrightarrow \vec{n}$ (normal à P) et $\vec{n'}$ (normal à P') sont colinéaires
 - \square $P//D \Leftrightarrow \vec{n}$ (normal à P) $\perp \vec{u}$ (directeur à D)
 - \square $P \perp \Delta \Leftrightarrow \vec{n}$ (normal à P) et \vec{u} (directeur à Δ) sont colinéaires
 - \Box équation de P, de vecteur normal $\vec{n}(a;b;c)$: ax + bx + cy + d = 0

GÉOMÉTRIE ANALYTIQUE DANS L'ESPACE

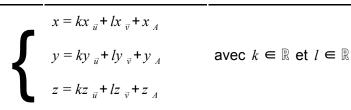
- repère $(0; \vec{i}; \vec{j}; \vec{k})$
- $\vec{u} = \vec{x} \vec{i} + y \vec{j} + z \vec{k}$ où \vec{x} est l'abscisse, \vec{y} l'ordonnée et \vec{z} la cote

- propriétés	
avec: - $\vec{u}(x,y,z)$ - $\vec{v}(x',y',z')$ - $A(x_A,y_A,z_A)$	- $\alpha \in \mathbb{R}$ - $\beta \in \mathbb{R}$ - $B(x_B, y_B, z_B)$
$\vec{u} + \vec{v} = (x + x', y + y', z + z')$	$-\vec{u}(-x,-y,-z)$
$\vec{u} - \vec{v} = (x - x', y - y', z - z')$	$\alpha \vec{u} (\alpha x, \alpha y, \alpha z)$
$\alpha \vec{u} + \vec{v} = (\alpha x + \beta x', \alpha y + \beta y', \alpha z + \beta z')$	$\vec{AB} = (x_B - x_A, y_B - y_A, z_B - z_A)$
$m[AB]((x_B+x_A) \div 2, (y_B+y_A) \div 2, (z_B+z_A) \div 2)$	vecteur colinéaire ⇔ coordonnées proportionnelles

- représentation paramétrique:
 - droite, passant par A et de vecteur directeur \vec{u} :



- plan, passant par A et de vecteur directeur \vec{u} et \vec{v} :



NOMBRE COMPLEXE

 $i^2 = -1$

 $\mathbb{C} = \{ x + iy / x \in \mathbb{R} \text{ et } y \in \mathbb{R} \}$

on note:

- z = x + iy, la forme algébrique
- x: partie réelle / x = Re(z)
- y: partie imaginaire / y = Im(z)
 - si y = 0 alors $z \in \mathbb{R}$
 - $\operatorname{si} x = 0 \operatorname{alors} z \in \mathbb{R}$

nombre complexe conjugué sachant que $\overline{(x+iy)} = x-iy$

- règle de calcul				
$\overline{z+z'} = \overline{z} + \overline{z'}$	$\overline{-z} = -\overline{z}$	$\overline{z-z'} = \overline{z} - \overline{z'}$	$\overline{z \times z'} = \overline{z} \times \overline{z'}$	$\overline{\left(\frac{1}{z}\right)} = \frac{1}{z}$
$\overline{\left(\frac{z}{z'}\right)} = \overline{z}_{z'}$	$\overline{z^n} = (\overline{z})^n$	$\overline{z+z} = 2x$	$\overline{z-z}=2iy$	$\overline{z \times z} = x^2 + y^2$

- second degré				
$az^2 + bz$	+c=0	$\Delta = b^2 - 4ac$	factorisation	
$\Delta \ge 0$	$z_1 = \frac{-b - \sqrt{\Delta}}{2a}$	$z_2 = \frac{-b + \sqrt{\Delta}}{2a}$	$f(z) = a(z - z_1)(z - z_2)$	
$\Delta = 0$	$z_0 = i$	<u>-b</u> 2a	$f(z) = a(z - z_0)^2$	
$\Delta < 0$	$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$	$z_2 = \frac{-b+i\sqrt{-\Delta}}{2a}$	$f(z) = a(z - z_1)(z - z_2)$	

preuve des factorisations

$$\begin{split} f(z) &= az^2 + bz + c \iff f(z) = a(z^2 + \frac{b}{a}z + \frac{c}{a}) \text{ or } (z + \frac{b}{2a})^2 = z^2 + \frac{b}{a}z + \frac{b^2}{4a^2} \\ \text{d'où } f(z) &= a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right] = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right] \\ \text{soit } \Delta &= b^2 - 4ac \text{ , alors } f(z) = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] \end{split}$$

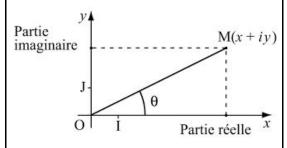
	dans les cas des Δ		
$\Delta > 0$	$\Delta = \sqrt{\Delta}^{2} \text{ d'où } f(z) = a \left[\left(z + \frac{b}{2a} \right)^{2} - \left(\frac{\sqrt{\Delta}}{2a} \right)^{2} \right]$ $= a \left[\left(z + \frac{b}{2a} \right) - \left(\frac{\sqrt{\Delta}}{2a} \right) \right] \times \left[\left(z + \frac{b}{2a} \right) + \left(\frac{\sqrt{\Delta}}{2a} \right) \right]$ soit $z_{1} = \frac{-b - \sqrt{\Delta}}{2a}$ et $z_{2} = \frac{-b + \sqrt{\Delta}}{2a}$	$f(z) = a(z - z_1)(z - z_2)$	
$\Delta = 0$	$f(z) = a \left[\left(z + \frac{b}{2a} \right)^2 \right] \text{ soit } z_0 = \frac{-b}{2a}$	$f(z) = a(z - z_0)^2$	

$$\Delta < 0$$

$$\Delta = -1 \times (-\Delta) = i^2(-\Delta)$$
or $-\Delta > 0$ donc $\Delta = i^2\sqrt{-\Delta}^2 = (i\sqrt{-\Delta})^2$
donc $f(z) = a\left[\left(z + \frac{b}{2a}\right)^2 - \left(\frac{i\sqrt{-\Delta}}{2a}\right)^2\right]$

$$= a\left[\left(z + \frac{b}{2a}\right) - \left(\frac{i\sqrt{-\Delta}}{2a}\right)\right] \times \left[\left(z + \frac{b}{2a}\right) + \left(\frac{i\sqrt{-\Delta}}{2a}\right)\right]$$
soit $z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$

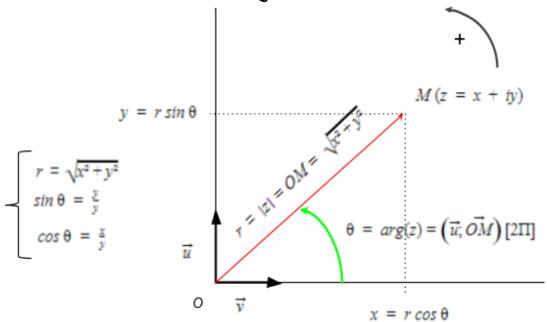
affixe d'un vecteur, affixe d'un point



- $\vec{w} + \vec{n}$: $z_{\vec{w}} + z_{\vec{n}}$ $\alpha \times \vec{w}$: $\alpha \times z_{\vec{w}}$

- \vec{AB} : $z_B z_A$ milieu de [AB]: $(z_A + z_B)$ ÷ 2

FORME TRIGONOMÉTRIQUE D'UN NOMBRE COMPLEXE



- z = x + iy, la forme algébrique
- $z = r (\cos\theta + i \sin\theta)$, forme trigonométrique
- $z = r e^{i\theta}$ avec $e^{i\theta} = cos\theta + i sin\theta$, notation exponentielle

- règle de calcul				
$ z+z' \le z + z' $	$arg(\overline{z}) = -arg(z) [2\Pi]$		$arg(z) = 0 \ ou \ \Pi[2\Pi] \ \text{si} \ z \in \mathbb{R}$	
i = 1	$arg(-z) = arg(z) + \Pi [2\Pi]$		$arg(z) = \frac{\Pi}{2} ou - \frac{\Pi}{2} [2\Pi]$ si z est un imaginaire pur	
$ z = \sqrt{x^2 + y^2}$ ou $ z ^2 = x^2 + y^2$			$ -z = z $ et $ \overline{z} = z $	

$ z \times z' = z \times z' $		$arg(z \times z') = arg(z) + arg(z') [2\Pi]$		
$\left \frac{1}{z}\right = \frac{1}{ z }$ avec $z \neq 0$		$arg(\frac{1}{z}) = -arg(z) [2\Pi]$		
$\left \frac{z}{z'}\right = \frac{ z }{ z' }$ avec $z' \neq 0$		$arg(\frac{z}{z^{i}}) = arg(z) - arg(z^{i})$ [2II]		
$ z^n = z ^n$		$arg(z^n) = n \times arg(z) [2\Pi]$		2П]
$e^0 = 1 \qquad \qquad e^{i\Pi} = -1$		$e^{i\frac{\Pi}{2}}=i$	$e^{-i\frac{\Pi}{2}} = -i$	$\left(e^{i\theta}\right)^n = e^{in\theta}$
	$e^{i(\theta+\theta')}=e^{i\theta}\times e^{i\theta'}$		$e^{-i\theta} = \frac{1}{e^{i\theta}}$	$e^{i(\theta-\theta')}=\frac{e^{i\theta}}{e^{i\theta'}}$

calcule d'angles et de longueurs

$ \vec{w} = \left z_{\vec{w}}\right $	$(\vec{w}, \vec{n}) = arg(\frac{z_{\vec{n}}}{z_{\vec{w}}}) [2\Pi]$
$AB = \left z_B - z_A \right $	$(\overrightarrow{AB}, \overrightarrow{CD}) = agr(\frac{z_D - z_C}{z_B - z_A}) [2\Pi]$

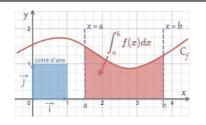
CALCUL D'INTÉGRAL

unité d'aire

- repère $(O; \vec{i}; \vec{j}) \rightarrow 1 \ u.a. = ||\vec{i}|| \times ||\vec{j}||$ intégrale de a à b:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

- o tel que F(x) est une primitive de f(x)(cf. partie dérivé et primitive)
- o nombre trouvé indépendant du repère choisi \rightarrow aires exprimées en u.a.



propriétés:

$\int_{a}^{a} f(x)dx = 0$	$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$	$\int_{a}^{b} k dx = k (b - a) $ où $k = cst$	
relation de chasles:	$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$		
linéarité:	$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$		
iiiloane.	$\int_{a}^{b} k \times f(x) dx = k \times \int_{a}^{b} f(x) dx$		
compatibilité sur [a; b]	$f(x) \ge 0 \iff \int_a^b f(x) dx \ge 0$	$f(x) \ge g(x) \iff \int_a^b f(x)dx \ge \int_a^b g(x)dx$	
valeur moyenne m	$m = \frac{1}{b-a} \times \int_{a}^{b} f(x) dx$		

inégalité de la moyenne

$$\sin m \le f(x) \le M$$

$$m \times (b-a) \le \int_a^b f(x) dx \le M \times (b-a)$$

VARIABLE ALÉATOIRE

x_i	x_1	x_2	x_2	 x_n	TOTAL
$p(X=x_i)$	$p(X = x_1)$	$p(X = x_2)$	$p(X=x_3)$	 $p(X=x_n)$	1

espérance	$E(X) = \sum x_i \times p(X = x_i) = x_1 \times p(X = x_1) + x_2 \times p(X = x_2) + \dots + x_n \times p(X = x_n)$
variance	$v(X) = \Sigma(x_i - E(x))^2 \times p(X = x_i)$ = $(x_1 - E(X))^2 \times p(X = x_1) + \dots + (x_n - E(X))^2 \times p(X = x_n)$
écart-type	$\sigma(X) = \sqrt{\upsilon(X)}$

LOI BINOMIALE

- schéma de Bernoulli

expérience réalisée n fois, avec soit S le succès et \overline{S} l'échec et k le nombre de succès

- propriétés des coefficients binomiaux (ⁿ_b)

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$\binom{n}{1} = \binom{n}{n-1} = n$$

$$\binom{n}{n-k} = \binom{n}{k}$$

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

- loi binomiale

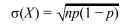
- soit X, un événement
- on répète l'expérience n fois de manière indépendante/ avec remise
- X compte le nombre de succès avec un probabilité égale à p
- donc X suit la loi binomiale, on peut écrire: $X \sim B(n; p)$
 - propriétés

pour
$$k \le n$$
, $p(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n-k}$

on a aussi:



v(X) = np(1-p)



LOIS À DENSITÉ DE PROBABILITÉ

- définition

 \bigstar aire sous la courbe: $\int_{a}^{b} f(t) dt = 1$

 $\rightarrow p(a \le X \le b) = p(total) = 1$

 \bigstar pour tout $c \leq d \in [a;b]$, on a:

$ p(c \le X \le d) = \int_{c}^{d} f(t) dt $ $ p(c \le X \le d) = p(c < X < d) $
\bigstar pour $n \in [a;b]$, $p(X=n) = 0$
$\bigstar E(X) = \int_{0}^{b} t f(t) dt$

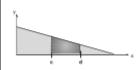
- loi uniforme sur un intervalle borné	
У.	$f(x) = \frac{1}{b-a}$

$$f(x) = \frac{1}{b-a}$$

$$p(c \le X \le d) = \frac{d-c}{b-a}$$

$$E(X) = \frac{a+b}{2}$$

loi exponentielle sur $[0; +\infty]$



$$f(x) = \lambda e^{-\lambda t}$$

avec $\lambda > 0$

$$p(c \le X \le d) = \int_{c}^{d} \lambda e^{-\lambda t} dt$$

$$E(X) = \frac{1}{\lambda}$$

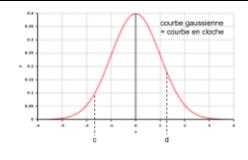
loi de durée de vie sans vieillissement

$$p_{(T \ge a)}(T \ge a + h) = p(T \ge h)$$

 \rightarrow la probabilité que l'objet vive encore hannées ne dépend pas de l'âge qu'il a.

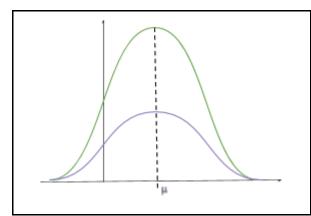
la loi exponentielle vérifie la loi de durée de vie sans vieillissement

- loi normale
 - → loi normale centrée réduite



- $f(x) = \frac{1}{\sqrt{211}}e^{-\frac{x^2}{2}} \to X \sim N(0; 1)$ $p(c \le X \le d) = \int_{c}^{d} \frac{1}{\sqrt{211}}e^{-\frac{x^2}{2}} dx$ E(X) = 0
- $\mathbf{\square}$ $\mathbf{v}(X) = 1$
- \Box $\sigma(X) = 1$

→ loi normale



□ remarque: plus l'écart-type σ est grand, plus le sommet de la courbe est bas

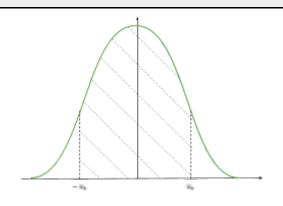
$$\rightarrow \sigma < \sigma$$

$$\square$$
 $X \sim N(\mu; \sigma^2)$

$$\Box$$
 $Z = \frac{X-\mu}{\sigma}$

$$\square$$
 $Z \sim N(0; 1)$

- intervalle
 - → intervalle centrée sur l'espérance



zone hachurée:

$$p(-u_{\alpha} \le X \le u_{\alpha}) = 1 - \alpha$$

$$\begin{array}{ll} & X \sim N(\mu;\sigma^2) \text{ et } Z \sim N(0;1) \\ & \text{avec } Z = \frac{X-\mu}{\sigma} \end{array}$$

$$u_{0.05} \approx 1.96$$
 et $u_{0.01} \approx 2.58$

□ propriété:

$$p(\mu - \sigma \le X \le \mu + \sigma) = 0.683 = 68.3\%$$

$$p(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.954 \approx 95.4\%$$

$$p(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.997 \approx 99.7\%$$

ightharpoonup intervalle asymptotique de fluctuation $p - u_{\alpha} \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + u_{\alpha} \frac{\sqrt{p(1-p)}}{\sqrt{n}}$

$$p-u_{\alpha}\frac{\sqrt{p(1-p)}}{\sqrt{n}}; p+u_{\alpha}\frac{\sqrt{p(1-p)}}{\sqrt{n}}$$

on cherche à déterminer si la fréquence observée est dûe à une fluctuation normale en choisissant un seuil

théorème de Moivre-Laplace

- \square $X \sim B(n; p)$

center et réduire:
$$Z_n = \frac{X_n - E(X_n)}{\sigma(X_n)} = \frac{X_n - np}{\sqrt{np(1-p)}}$$

$$\square \quad Z \sim N(0;1)$$

 $\square \quad \lim_{n \to \infty} p(a \le Z_n \le b) = p(a \le X \le b) \text{ ou}$ $X \sim N(0; 1)$

définition:

- \Box il faut que $n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$, on choisit α

- \Box on a $p(F_n \in I_n) = 1 \alpha$
- □ cas particulier ⇒ intervalle de fluctuation au seuil de 95% $\alpha = 0.05$ donc $u_{0.05} \approx 1.96$
- → intervalle de confiance $\left[f \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right]$

on cherche à déterminer la proportion en partant d'un échantillon

- \square proportion p inconnue et échantillon n et une fréquence f observée
- \square il faut que $n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$
- □ la probabilité que $p \in \left[f \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}} \right]$ est au moins égale à 95%