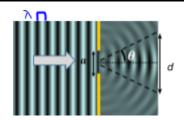
PHYSIQUE

PROPAGATION D'UNE ONDE

- ondes mécaniques progressives: propagation d'une perturbation dans un milieu matériel
 - o transversales : direction perpendiculaire au déplacement
 - o longitudinales : même direction que le déplacement
- <u>célérité</u> = *vitesse* de propagation // <u>retard</u> = *temps* entre deux points *en fase* noté $\tau = \frac{d}{r}$


exemple:

- $v_{son} = 340 \ m.s^{-1}$
- $v_{lumière (vide)} = 3,00.10^8 \ m.s^{-1} = c \rightarrow vitesse \ max$, dans les autres milieu d'indice n alors $v = \frac{c}{n}$
- la célérité le long d'une corde dépend de sa tension et de sa matière
- propriétés d'une onde
 propagation dans toutes les directions
 ⇒ tridimensionnel (lumière)
 ⇒ bidimensionnel (eau)
 → unidimensionnel (corde)
 - ne transporte que de <u>l'énergie</u>
 - sa vitesse dépend du milieu
 - deux ondes se croisent sans se perturber

➤ interférence remarque : deux onde additionnées			
les ondes arrivent:	interférences:	différence de marche	
en phase	constructives	brillantes	$\delta = k\lambda$
en opposition de phase	destructives	sombres	$\delta = (k + \frac{1}{2})\lambda$

interfranges: distance i entre deux franges: $i = \frac{\lambda \times D}{a}$, où D est la distance fente-écran et a la distance entre les deux fentes

- → en lumière *polychromatique*: chaque radiation/ couleur donne une *figure* <u>d'interférence</u>, celles-ci se superposent
 - diffraction : quand une onde rencontre un obstacle
- → diffraction de la lumière *polychromatique* = *trisation* de la lumière blanche

- a: largeur de la fente
- θ: écart angulaire
- *†d* : largeur ou diamètre de la tâche
- λ : longueur d'onde

$$\alpha = \frac{2}{3}$$

- périodique: $v = \frac{\lambda}{T}$, où λ est la distance entre deux points dans le même état vibratoire
- ondes sonores (périodiques)
- <u>oscillogramme</u>: sinusoïde = son pur ≠ son complexe
- même <u>fréquence (Hz)</u> = même *hauteur* → même *note* oscillogrammes différents = timbres différents
- → 20Hz (intrasons, graves)<audible<20 000Hz (ultrasons, aigus)
- source: plus on s'éloigne, intensité diminue
- <u>intensité sonore:</u> $I = \frac{P}{S} \text{ où P est la puissance en } W \text{ et S la surface en } m^2$
- \Box seuil d'<u>audibilité</u>: $I_0 = 10^{-12} W.m^{-2}$
- \Box seuil de <u>douleur</u>: $I_{M} = 1W.m^{-2}$
- niveau d'intensité sonore:

 $L = 10 \log(I \div I_0) dB$

- sensation auditive en décibel
 - → $10^{-12} W.m^{-2} < I < 1 W.m^{-2} \Leftrightarrow 0 dB < L < 120 dB$
 - \rightarrow pour une intensité I, deux fois plus élevée on a: $L' = 10 \log(2I \div I_0) = L + 3$
 - analyse spectrale:
- □ son *complexe* = *addition* de sons purs
- ☐ signal *périodique* = *addition* de sinusoïdes
 - fondamentale f, la plus basse (rang 1)
 - <u>harmoniques</u> f (rang 2, 3, 4, etc)
- ☐ timbre = nombre d'harmoniques et de leurs amplitude
- ondes lumineuses $v = \frac{v}{\lambda} = \frac{c}{\lambda(max)}$ $\lambda: \quad 400 \quad < \text{lumière visible} < \quad 800 \text{ nm}$ $v: \quad 7,5.10^{-14} \quad < \text{lumière visible} < \quad 3,75.10^{-14} \text{ (ultraviolets)}$ (infrarouges)
 - effet Doppler

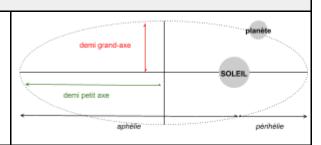
(son grave, λ grand)

A voiture

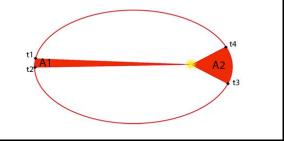
(son aigu, λ petit)

→ décalage de la fréquence : plus la vitesse est grande, plus le décalage est important (radar, écoulement sanguin, etc)

LOIS DE NEWTON ET KEPLER/ POSTULATS D'EINSTEIN


lois de Newton

- première loi: le principe d'inertie
 - forces qui se *compensent* $\rightarrow \Delta \vec{v} = 0 \Rightarrow \vec{a} = \vec{0}$
 - référentiel GALILÉEN si il vérifie le principe d'inertie
- deuxième loi: le principe fondamental de la dynamique
 - référentiel galiléen, $\sum \vec{F}_{ext} = \frac{d\vec{p}}{dt} = \frac{d(m.\vec{v})}{dt}$
 - si m est constante on a $\sum \vec{F}_{ext} = \frac{d(m.\vec{v})}{dt} = m.\frac{d\vec{v}}{dt} = m.\vec{a}$ la connaissance de $\sum \vec{F}_{ext}$, nous permet d'accéder à :
 - - 2. \vec{v} car $\vec{a}(t) = \frac{dv(t)}{dt}$


 - 3. \vec{OM} car $\vec{v}(t) = \frac{d\vec{OM}(t)}{dt}$ 4. équation horaire du mouvement (y en fonction de x)
- troisième loi: le principe des actions réciproques
- A exerce un force sur B ($\vec{F}_{A/B}$), alors B exerce une force sur A tel que $\vec{F}_{A/B}$ = - $\vec{F}_{B/A}$

lois de Kepler

- première loi: loi des orbites
- référentiel héliocentrique → trajectoire des planètes = ellipse
- distance "Soleil-Planète"≠ constante

- deuxième loi: loi des aires
- $t_2 = t_1 + \Delta t$ et $t_4 = t_3 + \Delta t$
- pendant Δt , $t_2 t_1 < t_4 t_3 \rightarrow \text{plus la}$ planète est proche du soleil, plus sa vitesse est grande
- $A_{1} = A_{2}$

• troisième loi: loi des périodes

$$\frac{T^2}{a^3} = k$$

T: période de révolution

a: demi grand axe

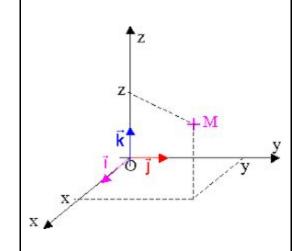
postulats d'Einstein

- 1905, les lois physiques sont les mêmes dans tout référentiel galiléen
- $c = 300\ 000\ km.s^{-1} = 3,00.10^8 m.s^{-1}$
 - o constante dans tout référentiel galiléen
 - o vitesse maximum de tout phénomène

ÉTUDE DES MOUVEMENTS

étude cinématique: étude du mouvement

- référentiel:
 - lieu à partir duquel on observe (héliocentrique: planètes / terrestre: à la surface de la terre/ géocentrique (centre de la terre): à la surface de la terre)
 - o repère position $(0; \vec{i}; \vec{j}; \vec{k})$ + repère temps (une date = une position)
- caractéristiques du vecteur:
 - o directeur (AB)
 - o sens de A vers B
 - \circ norme [AB]
- vecteur <u>position</u>: $\overrightarrow{OM}(x(t); y(t); z(t))$
- vecteur <u>vitesse</u>: $\vec{v} = \frac{\Delta \vec{OM}}{\Delta t}$
- \rightarrow vitesse <u>instantanée</u>: $\vec{v}(t) = \frac{d\vec{OM}(t)}{dt}$


$$\vec{v}(t) \, \left(\frac{dx(t)}{dt}; \, \frac{dy(t)}{dt}; \, \frac{dz(t)}{dt} \right) \Leftrightarrow \, \vec{v}(t) \, \left(x't, \, y't; \, z't \right)$$

• vecteur <u>accélération</u>: $\vec{a}(t) = \frac{dv(t)}{dt}$

$$\vec{a}(t) \, \left(\frac{dvx(t)}{dt}; \, \frac{dvy(t)}{dt}; \, \frac{dvz(t)}{dt} \right) \Leftrightarrow \, \vec{a}(t) \, \left(x''t; y''t; z''t \right)$$

• vecteur *quantité de mouvement*:

 $\vec{p} = m\vec{v}$ en $kg.m.s^{-1} \rightarrow constant$ dans un système isolé

mouvement	rectiligne $(a_N = 0)$	curviligne
uniforme $(a_T = 0)$	$\vec{v} = constante$ dans $(O; \vec{i}; \vec{j}; \vec{k})$ et $(\vec{n}; \vec{t})$, $\vec{a} = 0$	$\vec{v}_1 \neq \vec{v}_2 \neq \vec{v}_3$ mais $ \vec{v}_1 = \vec{v}_2 = \vec{v}_3 $ dans $(0; \vec{i}; \vec{j}; \vec{k})$, $\vec{a}(a_x; a_y)$ et dans $(\vec{t}; \vec{n})$, $\vec{a}(0, a_n)$
varié	dans $(0; \vec{i}; \vec{j}; \vec{k})$, $\vec{a}(a_x; a_y)$ dans $(\vec{t}; \vec{n})$, $\vec{a}(a_t; 0)$	dans $(0; \vec{i}; \vec{j}; \vec{k})$ et $(\vec{n}; \vec{t})$, $\vec{a} (\neq 0; \neq 0)$

champ de pesanteur

à l'échelle de la Terre

→ pas uniforme

à l'échelle humaine

→ uniforme

mouvement dans le champ de pesanteur de la Terre

- → bilan des forces extérieures (en négligeant les frottements): poids $\vec{P} = m.\vec{g} \Rightarrow chute \ libre$
- 1. deuxième loi de Newton, <u>principe fondamental de la d</u>ynamique:

-
$$\sum \vec{F}_{ext} = \frac{d(m.\vec{v})}{dt}$$
, or m est une constante donc $\sum \vec{F}_{ext} = m.\vec{d}$

$$\rightarrow m.\vec{g} = m.\vec{a} \implies \vec{g} = \vec{a}$$
, indépendant du poid \vec{a} (0:- g)

2. coordonnées de la vitesse:

coordonnees de la vitesse.
$$\vec{a}(t) = \frac{dv(t)}{dt}, \text{ d'où } \vec{v}(t) \left(K_1; -gt + K_2 \right) \\ \text{où } K_1 = \vec{v}_x \left(t = 0 \right) = \vec{v}_0 .cos \ \alpha \\ \text{et } K_2 = \vec{v}_y \left(t = 0 \right) = \vec{v}_0 .sin \ \alpha$$

ďoù

$$\vec{v}(t) (\vec{v}_x(t) = \vec{v}_0 .cos \alpha;$$

 $\vec{v}_v(t) = -g_t + \vec{v}_0 .sin \alpha)$

3. position de l'objet:

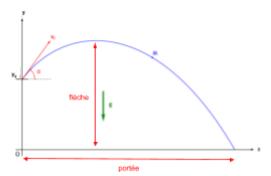
$$\vec{v}(t) = \frac{d\vec{OM}(t)}{dt}, \text{ d'où } \vec{OM}(t) (\vec{v}_0)$$

$$.\cos \alpha.t + K_3; -\frac{1}{2}gt^2 + \vec{v}_0.\sin \alpha.t + K_4)$$
où $K_3 = x(t=0) = 0$
et $K_4 = y(t=0) = y_0$

d'où
$$\vec{OM}(t)$$
 $(x(t) = \vec{v}_0 . \cos \alpha . t;$
 $y(t) = -\frac{1}{2}gt^2 + \vec{v}_0 . \sin \alpha . t + y_0)$

4. équation horaire de la trajectoire:

$$x(t) = \vec{v}_0 . \cos \alpha . t;$$


$$x(t) = \vec{v}_0 .\cos \alpha.t;$$

$$y(t) = -\frac{1}{2}gt^2 + \vec{v}_0 .\sin \alpha.t + y_0$$

or
$$t = \frac{z}{\vec{v}_0.\cos\alpha}$$

d'où
$$y = -\frac{1}{2}g(\frac{x}{v_0.\cos\alpha})^2 + \vec{v}_0.\sin\alpha \cdot \frac{x}{v_0.\cos\alpha} + y_0$$

ainsi $y = -\frac{g}{2v_0^2.\cos^2\alpha}x^2 + \tan\alpha \cdot x + y_0$

- → bilan des forces extérieures (en négligeant les frottements et la poussée d'archimède):
 - poids $\vec{P} = m.\vec{g}$
 - force électrique $\vec{F_e} = q.\vec{E}$ où $E = \frac{U}{d} V.m^{-1}$
- 5. deuxième loi de Newton, <u>principe fondamental de la dynamique</u>:
 - $\sum \vec{F}_{ext} = \frac{d(m.\vec{v})}{dt}$, or m est une constante donc $\sum \vec{F}_{ext} = m.\vec{a}$
 - et $\sum \vec{F}_{ext} = \vec{P} + \vec{F}_e$

$$\rightarrow m.\vec{g} = \vec{P} + \vec{F_e} \implies \vec{a} = \frac{q.\vec{E}}{m}$$
$$\vec{a} (0; -\frac{q.\vec{E}}{m})$$

6. coordonnées de la vitesse:

$$\begin{split} \vec{a}(t) &= \frac{dv(t)}{dt} \text{ d'où } \vec{v}(t) \left(K_1; -\frac{q.\vec{E}}{m}t + K_2\right) \\ &\text{où } K_1 = \vec{v}_x \left(t = 0\right) = \vec{v}_0 \\ &\text{et } K_2 = \vec{v}_y \left(t = 0\right) = 0 \end{split}$$

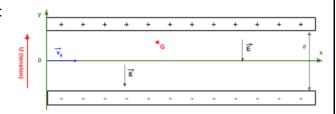
ďoù

$$\vec{v}(t) \left(\vec{v}_{x} \left(t \right) = \vec{v}_{0} \right);$$

$$\vec{v}_{y} \left(t \right) = -\frac{q \cdot \vec{E}}{m} t \vec{v}_{0} .sin \alpha \right)$$

7. position de l'objet:

$$\vec{v}(t) = \frac{d\vec{OM}(t)}{dt}$$
, d'où $\vec{OM}(t)$ ($\vec{v}_0 . t + K_3$; $-\frac{1}{2} \frac{q.\vec{E}}{m} t^2 + K_4$)
où $K_3 = x(t=0) = 0$
et $K_4 = y(t=0) = 0$


d'où
$$\overrightarrow{OM}(t)$$
 ($x(t) = \overrightarrow{v}_0 .t$;

$$y(t) = -\frac{q.\vec{E}}{2m}t^2$$

8. équation horaire de la trajectoire:

$$x(t) = \vec{v}_0 \cdot t$$

$$y(t) = -\frac{q \cdot \vec{E}}{2m} t^2$$
or $t = \frac{x}{\vec{v}_0}$
d'où $y = -\frac{q \cdot \vec{E}}{2m} (\frac{x}{\vec{v}_0})^2$
ainsi $y = -\frac{q \cdot \vec{E}}{2m \cdot \vec{v}_0^2} x^2$

- → si la particule se dirige vers la borne +, <a href="mailto:q<0">q<0
- \rightarrow si la particule se dirige vers la borne -, a > 0

A RETENIR

- forces extérieures: poids $\vec{P} = m.\vec{g}$ et force électrique $\vec{F_e} = q.\vec{E}$
- **❖** principe <u>f</u>ondamental de la <u>d</u>ynamique: $\sum \vec{F}_{ext} = \frac{d(m.\vec{v})}{dt} \rightarrow \vec{a} = \vec{g} /\!/ \vec{a} = \frac{q.\vec{E}}{m}$ **❖** vitesse: sachant $\vec{a}(t) = \frac{dv(t)}{dt} \rightarrow \vec{v}$ (-;-) avec \vec{v}_x (t = 0) et \vec{v}_y (t = 0) **❖** position: sachant $\vec{v}(t) = \frac{d\vec{OM}(t)}{dt} \rightarrow \vec{OM}$ (-;-) avec x(t = 0) et y(t = 0)

- ❖ équation horaire de la trajectoire: y en fonction de x

mouvement de la Terre autour du Soleil

on suppose que la Terre tourne de manière circulaire autour de la Soleil

* accélération: principe fondamental de la dynamique

$$\Sigma F_{ext}^{\rightarrow} = F_{S/T}^{\rightarrow}$$
: attraction du soleil $\rightarrow F_{S/T}^{\rightarrow} = G_{S/T}^{M_T M_s} \vec{N}_{S/T}^{\rightarrow}$

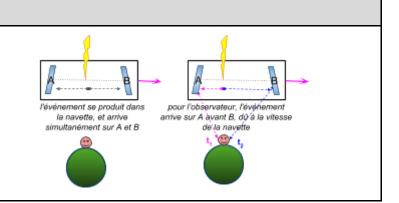
$$\Sigma F_{ext} = M_T \cdot \vec{a} \Leftrightarrow M_T \cdot \vec{a} = G_{ST^2}^{M_T \cdot M_s} \cdot \vec{N} \text{ d'où } \vec{a} = G_{ST^2}^{M_s} \cdot \vec{N} \rightarrow \vec{a} \left(G_{ST}^{M_s} \cdot \vec{N}; a_N \right)$$

 $\begin{array}{l} \Sigma F \stackrel{\rightarrow}{_{ext}} = F \stackrel{\rightarrow}{_{S/T}} : \text{ attraction du soleil} \rightarrow F \stackrel{\rightarrow}{_{S/T}} = G \frac{M_T M_s}{ST^2}. \vec{N} \\ \Sigma F \stackrel{\rightarrow}{_{ext}} = M_T . \vec{a} \iff M_T . \vec{a} = G \frac{M_T M_s}{ST^2}. \vec{N} \text{ d'où } \vec{a} = G \frac{M_s}{ST^2}. \vec{N} \rightarrow \vec{a} \left(G \frac{M_s}{ST^2}. \vec{N}; a_N \right) \\ \rightarrow \vec{v} = constante \text{ donc } a_N = 0 \text{ , si le mouvement est circulaire, il est uniforme} \end{array}$

(autre manière de le prouver: deuxième loi des aires égales de Kepler)

- \bigstar vitesse: le mouvement étant circulaire et uniforme $\to a_N = \frac{v^2}{R} \Leftrightarrow v^2 = a_N R$ or $a_N = \frac{GM_S}{ST^2}$ et $R = STa_N$ donc $v^2 = \frac{GM_S}{ST^2} \times ST \Leftrightarrow v = \sqrt{\frac{GM_S}{ST}}$ (a.n.: 30 km.s⁻¹)
- période de révolution

$$T = \frac{p \acute{e}rim \grave{e}tre\ de\ l'orbite}{v}$$


$$T^2 = \frac{(\Pi \times 2)^2 \times ST^2}{\frac{GM_S}{ST}} \Leftrightarrow \frac{T^2}{ST^3} = \frac{4\Pi^2}{GM_S} \rightarrow 3^e$$
 loi Kepler

RELATIVITÉ RESTREINTE DU TEMPS

caractère du temps

la simultanéité des événements dans la navette <u>ne l'est pas sur</u> <u>terre</u>

→ ce qui impose que le temps est relatif

on note $\Delta T' = \Delta T_0 \times \forall$ où $\forall = \sqrt{\frac{1}{1 - \frac{y^2}{c^2}}} \Rightarrow$ c'est la <u>dilatation du temps</u>

TRAVAIL ET ÉNERGIE

- travail d'une force
 - $\circ \quad \textit{définition} : \ W_{A \to B}(\vec{F}) = \vec{F} \cdot \vec{AB} = F \cdot AB \cdot \cos(\vec{F}\,; \vec{AB}) \to \text{force } \vec{F} \text{ , qui se déplace } \\ \text{de } A \text{ vers } B$

o travail			
/	moteur favorise le déplacement	n'a pas d'effet	<u>résistant</u> opposé au déplacement
$W_{A o B}(\vec{F})$	> 0	= 0	< 0
$\alpha = cos(\vec{F}; \vec{AB})$	$0 < \alpha < 90$	$\alpha = 90$	$90 < \alpha < 180$
graphiquement	Ü	ü P̄	ű F

 travail d'une force conservative : ne dépend pas du trajet mais des points d'arrivée et de départ

poids	$W_{A \to B}(\vec{P}) = P \cdot AB \cdot cos(\alpha)$ $= mg \cdot (z_A - z_B)$ $= mgh$ et $W_{B \to A}(\vec{P}) = -mgh$	Za Alb h
force électrique	$\begin{split} W_{A \to B}(\vec{F_e}) &= F_e \cdot AB \cdot cos(\alpha) \\ &= qE \cdot AB \cdot \frac{BC}{AB}) \\ &= qEL \\ \text{or } E = \frac{U_{A/B}}{L} \text{ , ainsi } W_{A \to B}(\vec{F_e}) = qU_{A/B} \end{split}$	C L B

o travail d'une force non conservative

frottement

$$W_{A \to B}(\vec{f}) = f \cdot AB \cdot cos(\Pi)$$

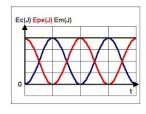
=- $f \cdot AB$
 \to dépend de la distance AB

• transfert d'énergie

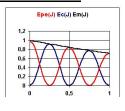
o énergie *potentielle*

pesanteur (EPP)

- Epp(z) = mgz
- $W_{A \to B}(\vec{P}) = mgh \text{ ou } mg \cdot (z_A z_B)$
- $$\begin{split} & \Delta Epp_{A \to B}(z) = mg(z_B z_A) \\ \Rightarrow & \Delta Epp_{A \to B}(z) = & -W_{A \to B}(\vec{P}) \end{split}$$


électrique (EPE)

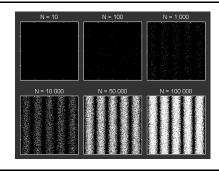
- Epe = qV
- $W_{A \rightarrow B}(\vec{F_e}) = qU_{A/B} \text{ ou } q \cdot (V_A V_B)$ - $\Delta E pe_{A \rightarrow B} = q \cdot (V_B - V_A)$
- $\Delta E p e_{A \to B} = q \cdot (V_B V_A)$ $\Rightarrow \Delta E p e_{A \to B} = -W_{A \to B}(\vec{F_e})$


o énergie *mécanique*

Em = Ec + Ep où $Ec \rightarrow$ énergie cinétique $Ec = \frac{1}{2}mv^2$ $Ep \rightarrow$ somme des énergies potentielles

conservation

- non conservation

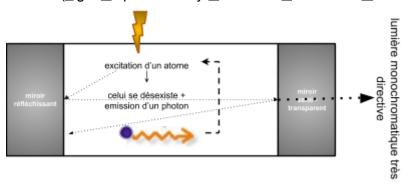

TRANSFERT MACROSCOPIQUE D'ÉNERGIE

- passage de *micro* à *macro* : constante d'Avogadro $N_A = 6,022.10^{23}$ atomes
- énergie <u>totale</u> d'un système, notée E_{TOT}, comprend
 - énergies *microscopiques* ou énergie *interne* notée *U*
 - \Rightarrow (E_c des particules/ E_P d'interactions entre atomes, etc)
 - énergies macroscopiques

- \Rightarrow (E_C du système/ E_{PP} , $E_{PEletrique}$, $E_{PElastique}$)
- $\circ \quad E_{\tau O \tau} = E_m + U \text{ en } Joule$
- <u>variation</u> $\Delta U = m.c.(T_F T_I) = m.c.\Delta T$ où c est la <u>capacité thermique massique</u> (en $J.kg^{-1}.K^{-1}$ ou $J.kg^{-1}.^{\circ}C^{-1} \rightarrow$ énergie qu'il faut pour augmenter 1 kg de 1°C/K)
 - travail W
 - transfert thermique Q
 - \Rightarrow W et $Q \ge 0 \rightarrow \underline{recu} \ne W$ et $Q \le 0 \rightarrow \underline{cede}$
 - <u>conduction</u> (transfert de proche en proche)
 - convection (déplacement de <u>fluide</u> chaud vers le haut)
 - <u>rayonnement</u> (émission ou absorption d'un rayonnement électromagnétique)
 - <u>flux thermique</u> (vitesse du transfert thermique chaud vers froid) $\Phi = \frac{Q}{\Delta t} \ W(watts = J.s^{-1}) \ \text{et} \ \Phi_{1 \to 2} = \frac{T_1 T_2}{R_{th}} \ W$
 - où la <u>résistance thermique</u> R_{th} (capacité à s'opposer au transfert thermique)
 - dépend de son épaisseur e, sa surface S et sa conductivité thermique λ
 - o est définie par $R_{th} = \frac{e}{\lambda \times S} K.W^{-1}$
 - si il y plusieurs parois accolées, les résistances thermiques <u>s'additionnent</u>
 - o si E_m =constante, $\Delta U = W + Q$
 - o si le système <u>n'interagit pas</u> avec son environnement, ΔU=0 J
- rendement en %(efficacité de la transformation) : $\eta = \frac{\acute{e}nergie\ utile}{\acute{e}nergie\ reçue} \times 100$

DUALITÉ ONDE-PARTICULE

- le photon
 - particule élémentaire des <u>ondes lumineuses</u> (électromagnétiques)
 - o aspect particulaire et ondulatoire
 - o quantum d'énergie
 - masse nulle, charge nulle, $v = c = 3,00.10^8 m.s^{-1}$
 - transport d'énergie : $E = hv \Leftrightarrow E = \frac{h.c}{\lambda}J$ où la constante de Planck $h = 6?63.10^{-34}J.s$
 - o relation de <u>De Broglie</u> (quantité de mouvement) : $p = \frac{h}{\lambda} kg.m.s^{-1}$
- interférences :


→ les *premiers* impacts semblent <u>désordonnés</u> puis on observe une <u>figure</u> <u>d'interférence</u> (semblable à celui d'une onde) car les <u>probabilités de présence</u> sont plus grandes à certains endroits que d'autres)

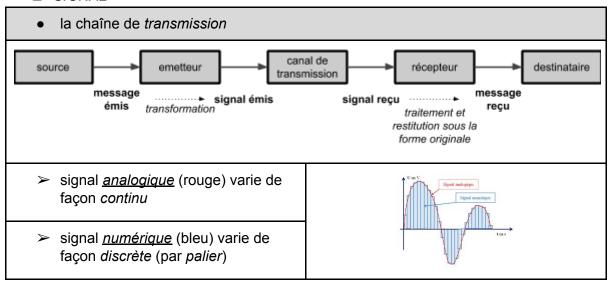
TRANSFERTS QUANTIQUES D'ÉNERGIE

transition d'énergie

- \circ énergie du photon : $E = E_{sup} E_{inf}$
- énergie émise/ absorbée : $E = \frac{h.c}{\lambda}$
 - \Leftrightarrow la longueur d'onde *absorbéel émise* $\lambda = \frac{hc}{E} = \frac{hc}{E_{sur} E_{inf}}$
- <u>absorption</u> = visible sur un spectre de *raies d'absorption* par des raies <u>noires</u>
 <u>// emission</u> = visible sur un spectre de *raies d'émission* par des raies <u>colorées</u>
- o transitions énergétiques :
 - \blacksquare noyaux = rayonnement Y
 - électrons = U.V. et visible
 - liaisons moléculaires = IR

LE LASER (Light Amplification by Stimulated Emission of Radiation)

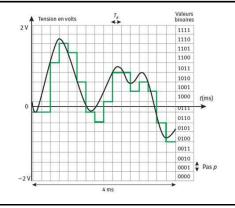
NUMÉRISATION DE L'INFORMATION


nombre binaire en décimale

exemple de b= 01001101 (on travaille sur <u>1 octet = 8 bits</u>)

	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
octet	128	64	32	16	8	4	2	1
d	0	1	0	0	1	1	0	1
somme	0	64	0	0	8	4	0	1

on a donc b = 64 + 8 + 4 + 1 = 77


☐ SIGNAL

numérisation:

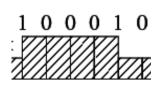
signal analogique en signal numérique → tension électrique en valeur numérique avec un Convertisseur Analogique Numérique (C.A.N)

- échantillonnage : découpe le signal en échantillon de durée $T_{\scriptscriptstyle E}$ où la fréquence $F_E = \frac{1}{T_E}$
- quantification et <u>numérisation</u>:
- nombre de bits n
- amplitude A
- alors le pas $p = \frac{A}{2^n}$ x valeurs permises : $x = 2^n$

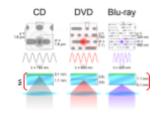
☐ IMAGE

codage

mesure de l'intensité lumineuse moyenne reçue par chaque pixels


- noir et blanc : nuances de gris avec 0 ou 1
- couleurs (R/V/B):
 - synthèse additive
 - chaque pixel = on utilise 3 octets
 - 1 octet/ couleur
 - couleurs possibles : $x = 2^8 + 2^8 + 2^8 = 16777216$ couleurs
- <u>définition</u> d'une image = <u>nombre de pixels</u> qui la compose
- <u>taille</u> d'une image = <u>place</u> nécessaire au stockage
- la taille est = $nb_{pixels} \times nb_{octets \ par \ pixel}$ octet
- comme 1 $octet = 8 \ bits$, la taille est = $nb_{pixels} \times 8 \times nb_{octets \ par \ pixel}$ bits

□ LA TRANSMISSION


- → caractéristiques:
 - <u>atténuation</u> (ou amortissement) $A = 10 log(\frac{P_E}{P_S})$: puissance à l'entrée P_E > celle à la sortie P_S
 - coefficient d'atténuation $\alpha = \frac{A}{L}$
 - lacktriangle débit binaire : <u>vitesse</u> de transmission ($nb_{bits}.s^{-1}$)
- propagation
 - guidée : câble entre la source et l'émetteur
 - transmission par câble
 - transmission par fibre optique (monomode : une information à la fois ≠ multimode : plusieurs information)
 - libre : dans toutes les directions, on ne sait pas où est le récepteur
 - la transmission hertzienne (onde électromagnétique)

☐ STOCKAGE OPTIQUE

- → succession de plats et de creux disposée en spirale à partir du centre
- → phénomène de diffraction :
 - ◆ si il y a un changement de hauteur (retard), 1
 - ♦ sinon, 0

- → <u>augmenter</u> la capacité de stockage
 - ★ allonger la longueur de la spirale
 - ★ rapprocher les lignes de la piste
 - \bigstar diamètre d du faisceau incident plus fin où $d=1.22 imes rac{\lambda}{NA} o$ laser de plus petite longueur d'onde

CHIMIE

TRANSFORMATION D'UN SYSTÈME CHIMIQUE

- système:
 - o réagit *instantanément* → trop rapide pour distinguer l'évolution
 - ∘ réagit *lentement*→ quelques minutes ou secondes
 - o *n'évolue pas* → réaction impossible ou extrêmement lente
- facteurs *cinétiques* (influent sur la vitesse de réaction):
 - o concentration: + concentré, + rapide
 - o *température* : + chaud, + rapide (froid = arrêt ou ralentissement → trempe)
 - o état physique : gaz, + rapide
 - o lumière
 - solvant : favorise le déplacement
 - o catalyseur (accélère la réaction, mais n'apparaît pas dans le bilan)
 - <u>homogène</u> : réactifs et catalyseurs dans le <u>même</u> état physique
 - <u>hétérogène</u> : réactifs et catalyseurs dans des états physiques différents
- temps de *demi-réaction*: $t_{1/2}$
 - o avancement à atteint la moitié de sa valeur maximale/ finale : $x_{MAX/2}$ ou $x_{FIN/2}$
 - $0 t_{final} = 5 \text{ à } 7 \times t_{1/2}$

RÉACTION D'OXYDORÉDUCTION

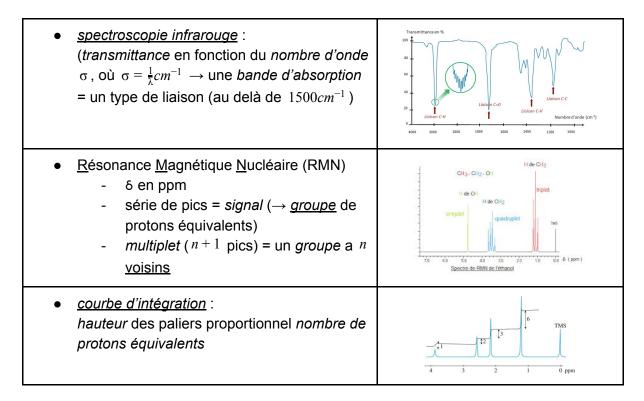
- transfert d'électrons
- réducteur cède des électrons
 ⇒ oxydation
- oxydant capte des électrons
 ⇒ réduction
- couple rédox/ oxydant réducteur = oxydant + réducteur d'un même élément
- réducteur = oxydant + ne⁻

 réaction d'oxydoréduction: <u>transfert</u> <u>d'électrons</u> entre deux couples rédox

$$réd_1 \rightarrow ox_1 + ne^-$$

 $ox_2 + ne^- \rightarrow réd_2$ demi-équations électroniques

$$réd_4 + ox_9 \rightarrow ox_4 + réd_9$$


+ *coefficient* pour garantir qu'il ne reste pas d'électrons libres = <u>égalité</u> du nombre de

remarque: certain n'existe que dans des conditions particulières charge total

ANALYSE SPECTRALE

formule brute					BPECTRA		C ₂ H ₆		
formule éclatée/ développée					н-с-с-н н н				
	formule	semi-dév	eloppée				H ₃ C-CH ₃		
	form	nule de Le	ewis		formule semi-développée + doublets non liants				
	formu	ıle topolo	gique				/		
	représentation de Cram			— liaison dans le <u>plan</u> ▶ liaison en <u>avant plan</u> ∥µ⊷ liaison en <u>arrière plan</u>					
1	2	3	4	5	6 7 8		9	10	
méth-	éth-	prop-	but-	pent-	hex-	hept-	oct-	non-	déc-
nom molé		termina no		pré	oréfixe nom du groupe caractéristique grou		upe		
alca	ane	-aı	ne	1	1		1		·C
alce	ène	-èı	ne	,	,	1		C=C	
alc	ool	-(-ol hydrox		оху-	hydroxyle		-OH	
aldél	hyde	-6	al	oxo- / fo		/I-I carbonyle (bout de chaîne)		-CH=O	
céto	one	-01	ne	ox	0-	carbonyle		-C=O	
aci carbox		acide -	-oïque	/	,	carboxyle (bout de chaîne)		-C(O)OH	
es	ter		-oate de oxycarb		bonyl- ester		(1)-C(O)O-(2)		
am	ine	-am	nine	ami	no-	amine		-N	
am	amide -amide carbai		moyl-	am	ide	-C(C)N-		

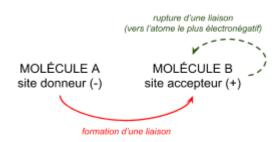
- transistance $T = \frac{I}{Io} \rightarrow absorbance A = -logT$
- <u>plus</u> il y a de *liaisons* = absorbance de <u>grandes</u> *longueurs d'ondes*
- couleur absorbée ≠ couleur de la lumière

REPRÉSENTATION SPATIALE DES MOLÉCULES

stéréoisomérie			
❖ de <u>conformation</u> libre rotation des liaison C – C	➤ étoilée	$H \xrightarrow{H} H$	
	➤ éclipsée	# # # # # # # # # # # # # # # # # # #	
	➤ <u>chirale</u> pas superposable à son image dans un miroir		
❖ de configuration pas de libre rotation des liaison	➤ <u>énantiomère</u> molécule symétrique (image l'une de l'autre)		
	≠ <u>diastéréoisomère</u> isomérie Z et E	H H H B A H H Z: zusammer (ensemble) E: entgegen (opposé)	
	atome asyméti	rique C*	

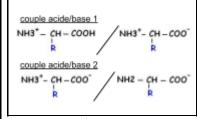
lié à 4 groupes d'atomes différents → chirale et possède une énantiomère

TRANSFORMATION EN CHIMIE ORGANIQUE


(molécules ayant au moins C-H)

❖ aspect macroscopique

- modification de la chaîne
 - <u>craquage</u> (chauffer, 500°C) → <u>raccourcir</u> la chaîne
 * vapocraquage (vapeur, 800°C) ⇒ formation d'alcène
 - <u>reformage</u>→_modification de la chaîne ⇒ isomérisation (ramifié) ou cyclisation
 - o <u>allongement</u> \Rightarrow alkylation (alcane ramifié) ou *polymérisation* ($n \times$ monomères = polymère)
- modification du groupe fonctionnel
 - o <u>substitution</u> \rightarrow remplacer un atome/ groupe d'atomes $A + B \rightarrow A' + B'$
 - o <u>addition</u> \rightarrow <u>ajouter</u> un atome/ groupe d'atomes (molécule avec liaison(s) multiple(s)) $A + B \rightarrow C$
 - <u>élimination</u> → retirer un atome/ groupe d'atomes \Rightarrow formation de liaison(s) multiple(s) $A \rightarrow B + C$


aspect microscopique

- définitions:
 - o couches électroniques : $(K)^a(L)^b(M)^c$
 - couche de valence (dernière couche) : pour être stable → liaisons covalentes
 ⇒ octet ou duet
- polarisation d'une liaison : si $X_B > X_A$ alors $A \longrightarrow B$ \Rightarrow facile à casser
- site :
 - o accepteur (défaut d'électrons) δ^+ ou +
 - o donneur (excès d'électrons) δ^- / / liaison multiple ou doublet non liant

ACIDES ET BASES

couple acido-basique : AH I A⁻ ou BH⁺ I B
 AH ≥ A⁻ + H⁺
 ★ acide: cède un proton
 ★ base: capte un proton
 espèce amphotère : espèce qui sont acide et base
 ★ acide α-aminé

★ H₂O

réaction acido-basique

couple 1: AH₁ IA-1 couple 2: AH₂ IA⁻2

$$AH_1 + \underline{\mathbf{A}}_2^{-} \neq AH_2 + \underline{\mathbf{A}}_1^{-}$$

équilibre chimique

réaction totale
(jusqu'à élimination du réactif limitant)
$A + B \rightarrow C + D$

* réaction partielle ou limitée (aboutit à un équilibre chimique) A + B **≥** C + D

→ acide fort

⇒ n'existe pas dans l'eau au contraire acide et base faibles, → base forte réagissent partiellement

$$AH + H_2O \rightarrow \underline{A}^- + H_3O^+$$

 \underline{A}^{-} + $H_2O \rightarrow AH$ + OH^{-}

le pH (potentiel d'Hydrogène) : détermine la force d'un acide ou d'une base

réaction totale avec l'eau

$$pH = -log[H_3O^+]$$

remarque:
$$-\log[10^{-a}] = a$$

→ base

avec le <u>produit ionique</u> de l'eau $pH = 14 + log[OH^-]$ $Ke = \overline{[H_3O^+][OH^-]} = 10^{-14}$

$$pH = 14 + log[OH^-]$$

$$\frac{-log[10] - a}{\frac{[H_3O^+]}{10}} \rightarrow pH + 1$$

la constante d'acidité K_A du couple AH I A

$$K_A = \frac{[A^-]_{\acute{e}d} \times [H_3O^+]_{\acute{e}d}}{[AH]_{\acute{e}d}}$$
, pour un couple $K_A = constante$

- $ightharpoonup pK_A = -log(K_A) \Leftrightarrow pK_A = pH log(\frac{[A]}{[AH]})$ et ainsi $pH = pK_A + log(\frac{A}{AH})$ $pH - pK_A = log(\frac{[A^-]}{[AH]})$ > solution tampon : $pK_A - 1 < pH < pK_A + 1$

- ightharpoonup diagramme de <u>prédominance</u> sachant que $pH pK_A = log(\frac{A}{4H})$

 - $\begin{array}{l} \circ \quad \text{si } pH = pK_A \text{ alors } log(\frac{[A^-]}{[AH]}) = 0 \text{ donc } [A^-] = [AH] \\ \circ \quad \text{si } pH > pK_A \text{ alors } log(\frac{[A^-]}{[AH]}) > 0 \Leftrightarrow \frac{[A^-]}{[AH]} > 1 \text{ donc } [A^-] > [AH] \\ \end{array}$ ⇒ base prédomine
 - $\circ \quad \text{si } pH pK_A \text{ alors } log(\frac{\lceil A^- \rceil}{\lceil AH \rceil}) < 0 \Leftrightarrow \frac{\lceil A^- \rceil}{\lceil AH \rceil} < 1 \text{ donc } \lceil A^- \rceil \ < \lceil AH \rceil$ ⇒ acide prédomine

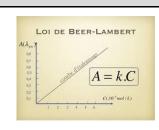
remarque: pour les amphotère, on $K_A = K_E \Rightarrow$ réaction <u>d'autoprotolyse</u> de l'eau

réaction acide fort et base forte

$$A^- + H_3O^+ + B^+ + OH^- \rightarrow H_2O + A^- + B^+$$

 $H_3O++OH^- \rightarrow H_2O$

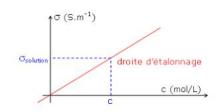
CONTRÔLE DE LA QUALITÉ PAR DOSAGE


dosage par <u>étalonnage</u>

déterminer une concentration C_x en comparant une grandeur G

- > spectrophotométrie, mesure de <u>l'absorbance</u> où G = A
- \rightarrow d'après la loi de Beer-Lambert,

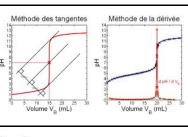
$$A = \varepsilon \cdot l \cdot C \Leftrightarrow A = k \cdot C$$


avec $\varepsilon = l.cm^{-1}.mol^{-1}$, l = cm et $C = mol.l^{-1}$

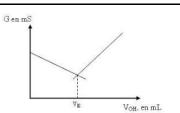
- ightharpoonup conductimétrie, mesure de <u>l'aptitude</u> à conduire le courant où $G = \sigma$
- → d'après la loi de Kohlrausch,

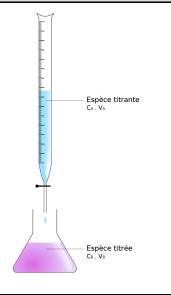
$$\sigma = \sum_{i=1}^{n} \lambda_{i} \cdot [X_{i}] \Leftrightarrow \sigma = k \cdot C$$

avec $\lambda = S.m^2.mol^{-1}$ et $C = mol.l^{-1}$



- dosage par <u>titrage</u>
 - mise en jeu d'une réaction chimique (rapide, totale, unique)
 aA + bB → P
 - à <u>l'équivalence</u>, les deux réactifs ont été introduits dans les <u>proportions</u> <u>stoechiométriques</u>


on a $\frac{n_A}{a} = \frac{n_B}{b} \Leftrightarrow \frac{C_A \times V_A}{a} = \frac{C_B \times V_B}{b}$


colorimétrie : détermination de l'équivalence grâce au changement de teinte

> pH-métrie : il faut que la réaction support soit acido-basique

conductimétrie : il faut que la réaction support fasse intervenir des <u>ions</u>

STRATÉGIE DE SYNTHÈSE ET SÉLECTIVITÉ

- synthèse
 - o réaction
 - o isolement (séparation du produit qu'on a synthétisé)
 - o purification (recristallisation pour un solide/ distillation pour un liquide)

- o caractérisation (contrôler la pureté du produit synthétisé)
- rendement : $\rho = \frac{n_p}{n_{max}}$ (rendement total = produit des rendement de chaque étape)
- la sélectivité :
 - conditions expérimentales
 - o réactif <u>chimiosélectif</u> réagit <u>préférentiellement</u> avec une <u>fonction</u>
 - ≠ un réactif <u>non chimiosélectif</u> réagit sur plusieurs fonctions, il faut donc protéger la fonction qui ne doit pas réagir
- <u>protection</u>: *transformer* un *groupe fonctionnel* en un autre grâce à un *groupe protecteur*