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Abstract: We demonstrate the implementation of a compact tunable-focus liquid lens 
suitable for adaptive eyeglass application. The lens has an aperture diameter of 32 mm, 
optical power range of 5.6 diopter, and electrical power consumption less than 20 mW. The 
lens inclusive of its piezoelectric actuation mechanism is 8.4 mm thick and weighs 14.4 gm. 
The measured lens RMS wavefront aberration error was between 0.73 µm and 0.956 µm. 
© 2017 Optical Society of America 
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1. Introduction 

Degradation of vision is common in all human beings. The biological lens in our eyes starts to 
degrade creating refractive errors of vision by the age of 45. The four most common 
refractive errors of vision are myopia (nearsightedness); hyperopia (farsightedness), where far 
and nearby objects are seen out of focus, respectively; astigmatism, where vision is distorted 
by an irregularly curved cornea; and presbyopia which leads to loss of focal accommodation 
and difficulty in reading at arm's length [1–3]. Presbyopia is mostly an age related condition 
as the average accommodation range drops from 11 diopters on 20 year olds to 2 diopters by 
the age of 50 [4]. Worldwide in 2005, over one billion people were estimated to suffer from 
presbyopia alone [5]. 

Refractive errors cannot be prevented, but they are treated with corrective devices such as 
glasses, contact lenses, and refractive surgery. Eyeglasses correct refractive errors by shifting 
the focal plane by a fixed diopter amount, but often these tools do not provide satisfactory 
solutions. For example, many myopia and hyperopia sufferers often suffer from presbyopia as 
well; thus they may require several sets of eyeglasses with different mono-focal, bifocal, 
trifocal, and progressive lenses [6–9]. Eyeglasses cannot restore the accommodation range of 
a normal eye; hence these solutions partition the visible field onto smaller focal zones suitable 
to observe objects at different distances. Lens zoning greatly reduce the effective field of 
view; thus resulting in significant visual impairment. 

The full field of view can be restored if the eyeglass lenses have a variable power that 
adaptively accommodates to the object distance. In order to address the need of most eyeglass 
corrected problems, the lens should have an accommodation range from −4 to + 4 diopters. 
Furthermore, the lenses should be light and thin with the aperture of 30-45 mm in diameter. 
The lens power should be adjusted at a minimum electrical power expense to ensure long 
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battery operation. In this paper we present the implementation of an electrically actuated 
variable power lens with aperture and power range suitable for adaptive eyeglass applications. 

2. Variable focus lens technologies 

Variable focus lenses (VFLs) change the curvature of the light wavefront in response to a 
control signal [10,11]. VFLs have been implemented using a variety of technologies, 
including sliding variable power rigid lenses [12–14], shape changing fluidic lenses [10,15–
21], and voltage-controlled graded index (GRIN) liquid crystals (LCs) [10,22–27]. Each of 
these has its own unique set of virtues and limitations. Sliding-power lenses, for example, are 
very simple in construction but are subjected to friction and wear. They produce visible air 
gaps and very narrow field of views as well. Graded index (GRIN) LC lenses are attractive 
because they require very little electrical power. LC lenses works very well at small apertures 
(a few mm in diameter) but GRIN LCs cannot provide the phase changes needed for larger 
aperture lenses with the notable exception of “collapsed” grooved Fresnel configurations [28–
30]. Fresnel configurations generally have image quality issues related to the visibility of the 
grooves and circular noise due to diffraction [28,29,31]. 

VFLs with larger apertures have also been realized with fluidic, flexible lenses by 
changing shape of peripheral rim, inserting liquid in or out, and by changing aperture [10,15–
21]. A liquid lens usually consists of a cylindrical bladder with flexible front or back surfaces 
filled with a transparent optical fluid. The shape of the lens is changed by either pumping 
fluid in and out or by squeezing of the bladder. A major challenge in liquid VFLs is the 
selection of the actuation mechanism. Several approaches have been reported with various 
degrees of successes including electrical motors, electrostatic forces, electrophoretic motion, 
and more recently piezoelectric actuators [10,15]. The largest aperture electrically controlled 
variable-focus liquid lens is manufactured by Optotune with a clear aperture of 10 mm which 
is too small for eyeglass applications. Liquid VFL systems with larger apertures (~30 mm) 
have been recently demonstrated under table top laboratory conditions, but they have not been 
yet realized for light weight applications [32]. 

3. Variable focus eyeglasses 

In this paper we demonstrate the realization of a liquid lens for eyeglass applications. The key 
features are its compact low weight and low profile design. Figure 1 shows a schematic cross-
section of our lens without the actuators. The lens consists of a rigid annular sealing rim of 
gap, gr encapsulated by two membranes forming a sealed chamber. This chamber is filled 
with a fixed volume of a high index optical fluid (glycerol n = 1.47). The top membrane has 
uniform thickness, tt and radius, rt. The bottom membrane has a rigid flat central piston of 
radius, rp supported by a flexible annular membrane of thickness, tb and radius, rb. The 
thickness of the bottom membrane is made very thin such that the force required to flex it is 
negligible compared to that required to deform the top membrane. When a normal force, 
Fpiston is applied to the bottom piston, the shape of the top membrane is changed. It bulges out 
or in depending on the direction of the force. This action thus produces a plano-convex or a 
plano-concave lens. The radius of the entire device is defined by the outer support rim and the 
lens thickness is defined by the piston displacement required for a given optical power 
change. The deflection requirement depends on the shape of the top membrane. 

The top membrane deflection, uo for a circular membrane of constant thickness under 
radial tension, T and uniform pressure, qo satisfies the modified biharmonic Eq. (33), 

 4 2. . .o o oD u T u q∇ − ∇ =  (1) 

Here, D is the flexural rigidity of the membrane. The Eqs. for D and T are, 
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where εi is the initial membrane stretch, E is the membrane Young’s modulus, and μ is the 
membrane Poisson’s ratio. 

 

Fig. 1. Simplified schematic of soft membrane liquid lens excluding actuators. The lens optical 
power, Popt is adjusted by vertically displacing the fluid, deflecting the top membrane thus 
changing its curvature. 

The solution of Eq. (1) for any T and D for a circular diaphragm with clamped edge 
boundary condition is well known [33], 
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diaphragm radius. This solution has two well-known limits for tension and rigidity dominated 
regimes. The maximum deflection height, h at the membrane center (r = 0) is 
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Note that, if tension is very large (β>>1), Eq. (4) converges to, 
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. In order to form a 

liquid lens, a spherical surface of radius of curvature, R is desired. Although the deformed 
membrane is not fully spherical, we approximate the deflection as a quadratic in ρ 
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corresponding to a spherical cap of radius R and maximum height h as shown in Fig. 2 
satisfying the relationship, 

 2 2 2( ) .tR h r R− + =  (5) 

 

Fig. 2. A circular diaphragm under uniform tension, T and pressure, qo forms approximately a 
spherical cap. 

For typical lenses used for eyewear h<< tr ; hence 2 / 2tR r h≈ . Thus the lens optical power 

is, 
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The lens power is thus proportional to the pressure qo. The top membrane displaced volume is 
the volume of the spherical cap, 

 2 2 21 1
( ) (3 ) .

6 2front o t tV q h r h h rπ πΔ = + ≈ ⋅ ⋅ ⋅  (7) 

Since the chamber volume is fixed the same liquid volume is displaced by the back 
membrane. If the back membrane is thin, narrow, and of negligible rigidity 
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where dp is the piston displacement. The piston force is, 2
piston b oF r qπ= . Combining Eq. (6) 

and (8), one obtains expressions for the piston spring constant pk  
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Equation (9) allows us to determine the piston displacement, dp from the applied force. The 
optical power versus piston displacement is obtained from Eqs. (8) and (6), 
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At the default lens position, the two membranes are flat and the minimum rim gap is selected 
such that the membranes are not in contact for the largest piston displacement, or min( )r pg d≈
. This relationship defines the minimum volume and weight of liquid in the chamber as a 
function of the maximum lens power such that 
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Equations (9), (10), and (11) are useful to estimate some of the liquid lens parameters. For 
example, for an optical power change of + 3D with glycerol as the optical fluid and using top 
membrane radius of 18 mm, piston radius of 16 mm, and bottom membrane radius of 20 mm, 
the required piston displacement is 0.511 mm which is also the minimum gap. The minimum 
glycerin volume is thus ≈1.3 cm3. For glycerin with density, oρ  = 1.26 g/cc, this corresponds 

to a minimum liquid weight of 1.64 gr. In practice, the lens weight will also be affected by the 
thickness and weight of the frame. 

The force required to move the piston depends on the initial tension parameter, T. The top 
and bottom membranes are made of polydimethylsiloxane (PDMS) with thicknesses of 1.2 
mm and 0.2 mm, respectively. The Young modulus and tension of these membranes can vary 
significantly depending on the PDMS mixture formulation and curing cycle [34]. We 
measured these parameters using the deflection method described in Yang et al. [35]. The 
value of Young’s modulus, Poisson’s ratio, and pre-strain were 987.6 kPa, 0.49, and 2.83%, 
respectively. This pre-strain yields a pre-tension of 33.5 N/m. The calculated piston force 
required for the optical power change of + 3 D was 0.75N or 76 gm consistent with these 
parameters. 

4. Control of hydrostatically induced coma aberrations 

The front diaphragm deformation is not only subject to the piston force but also the effects of 
gravity. If the lens is standing upright on its edge, gravity produces hydrostatic pressure 
which increases linearly from the top to the bottom of the lens. This hydrostatic pressure adds 
to that of the piston thus producing a non-spherical deformation and asymmetric bulging of 
the diaphragm. This lens shape distortion produces a significant amount of coma aberration 
[36,37] that must be minimized for acceptable optical performance. The deformation of 
membranes under symmetric hydrostatic pressure is given in [32], 
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Where g is the gravitational acceleration (9.8 m/s2), θ is the angle respect to the vertical axes, 
and I2() is the second order modified Bessel functions of the first kind. The hydrostatic 
pressure produces an S-type deflection that adds to the symmetric deflection of Eq. (3). The 
net effect of the distortion is that the optical power at the top is lower than the bottom of the 
lens. The slope of the distorted lens power versus height y at the lens center can be calculated 
from the mean curvature of Eq. (12) as, 
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The calculated and measured slopes of the optical power at the center of the lens are −0.084 
D/mm and −0.09 D/mm respectively. The power uniformity and quality of the lens image 
however can be arbitrarily improved if the tension is increased at the expense of optical 
power range. Coma can be reduced further or nearly eliminated with liquid-membrane-liquid 
lenses [32]. These lens configurations rely on the utilization of liquids of equal densities but 
different index on both sides of deflecting membranes. The primary disadvantage of this 
coma elimination method is that optical power is severely reduced as it is proportional to the 
index difference between two similar liquids (~0.2) compared to much larger index 
differences between optical liquids and air (0.5-0.7). 
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5. Piston actuation mechanism 

The central part of the lens (the bossed piston) is transparent and unobstructed; therefore the 
piston actuators are placed along the lens periphery as shown in Fig. 3. The piston moves up 
and down driven by three low-profile curved piezoelectric bimorph actuators. The points of 
contact of the three bimorphs with the piston thus define the backside plane of the liquid lens. 

 

Fig. 3. Schematic of the bimorphs actuating the bossed membrane lens (left) and photo of the 
actual device (Right). 

The vertical and angular deflections of curved bimorphs are [38,39] 
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where U(s) is the vertical deflection at the mid radius R as a function of the length s along the 
bimorph mid radius, and φ(s) is the bimorph tilt angle as shown in Fig. 4. The parameters Eb 
and Ib are the bimorph’s Young’s modulus and moment of inertia, respectively and Mb is the 
bimorph’s piezoelectric moment, 

 31 ,b b b b bM w E d t V= ⋅ ⋅ ⋅ ⋅  (15) 

where wb is the bimorph’s beam width, tb is the thickness of each bimorph layer, d31 is the 
bimorph’s piezoelectric coefficient and Vb is the applied voltage across the bimorph actuator. 

 

Fig. 4. Deflection of a curved bimorph. Since the outer edge is longer than the inner one, this 
type of actuator not only bends but also rotates at its tip. 
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For efficient deflection, the end support of the bimorph must pivot about the highest 
elevation point, the end of the bimorph outer radius. For example, a 22.5 mm radius actuator 
5 mm wide and an angle of 115◦, a 1 mm mid-radius deflection yields a rotation angle of 2.5◦ 
and a difference in deflection of 20% between the inner and outer radius. In order to get 
maximum deflection from the actuators without compromising the actuator force, we used a 
pinning-hole end configuration. Rigid pins are thus attached near the highest elevation point 
of the actuators (the outer farthest corner). The pins pivot inside cylindrical holes drilled 
inside three extension tabs connected to the central piston. The curved actuators were 
implemented using thin PZT 5H4E bimorphs with dimensions and characteristics shown in 
Table 1. Each bimorph actuator weighs less than 1 gm. 

Table 1. Curved Bimorph Characteristics. 

Bimorph Material PZT 5H4E 

Layer Thickness, tb 270 μm 

Width, w 8.2 mm 

Young’s Modulus, E 5x1010 N/m2

Piezoelectric Strain Coefficient, d31 −320x10−12 m/V 
Radius of Curvature, R 21 mm 

Angle of Cosine, (s/R) 110 -113  
Voltage Range 0-250 V 

Combining Eqs. (10), (14), and (15), we can obtain an expression for the lens optical 
power as a function of actuator parameters, liquid refractive index, lens dimensions, and 
operating voltage. If we drive each lens with three bimorphs, one obtains the optical power 
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Where kp is the piston spring constant of Eq. (9) and kb is the vertical spring constant of one 
bimorph at the pinhole support. The bimorph spring constant was measured as kb ~390 N/m. 
The optical power in Eq. (16) increases linearly with the actuator voltage Vb. As the 
membrane and piston are made stiffer, the spring constant of the bimorph actuator kb itself 
becomes important, and the lens membrane deflection and observed optical power is 
gradually reduced. 

6. High-voltage driver circuits 

The bimorphs require multiple high voltage control signals. For evaluation purposes, a fixed 
300V DC voltage source was used to power the driver circuits. The high voltage DC can also 
be generated using miniature 3V DC-to-DC converters (EMCO-A series) suitable for battery 
driven setups. The fixed DC voltage was converted to variable voltages using pulse width 
modulators (PWMs). Each PWM modulator was implemented using a high voltage half-
bridge driver circuit (ST Micro L6384E), two high voltage NMOS transistors (ST Micro 
IRF820) and a high-voltage 100 nF capacitor. The pulsed half-bridge drivers were driven by a 
microcontroller through opto-isolators. The bimorphs were driven in a bipolar two-terminal 
series configuration using two unipolar PWM high-voltage circuits in differential drive 
configuration. A software open loop control system was implemented to control the bimorph 
deflection and the lens optical power. The bimorph bending magnitude and direction was 
changed by adjusting the duty cycle of the PWM signal and driving from only one of the 
opposing PWM drivers at any given time. 

In addition to series bimorphs, other more efficient three-terminal configurations are also 
possible [40]. Y-poled (polling direction same) three-wire bimorphs were also tested for 
actuation in a bipolar configuration [40]. The bipolar configuration provides 30% more 
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deflection with higher actuation force but requires higher voltages. Lenses were made and 
tested with both configurations, but the series bimorph configuration was our preferred 
implementation due to its simplicity. 

7. Fabrication 

7.1 Lens frame and pistoned liquid chamber 

The lens rim was constructed by cutting acrylic sheet with laser (VLS 3.60, Universal Laser 
Systems) with 100% power and 10% speed for through cut and with 20% speed for making 
notches. The lens rim height was 2.5 mm and the lens rim had a notch of 1 mm in one side. 
The inner and outer radius of the rim was 18 mm and 26 mm, respectively. The radius in the 
notched part of the rim, rb was 20 mm. The front and back elastic membranes were made of 
polydimethylsiloxane (PDMS). The thicknesses of front and back membranes were 1.2 mm 
and 0.2 mm respectively. A PDMS silicone elastomer (Sylgard 184, Dow Corning) was used 
in 7.5:1 ratio of base and curing agent to fabricate the PDMS membranes at 60◦ C for 6 hours. 
After fabricating the membranes, the 0.2 mm thick back membrane was attached to the 
notched side of the rim and front membrane to the other side. Both membranes were attached 
to the acrylic rim using a thin layer of silicone sealing adhesive from Dow Corning (734 
Flowable Sealant). A thin solid transparent piston was next attached to the back membrane 
with optically clear urethane rubber (Clear Flex). The urethane rubber mixture was spun for 
550 rpm for 1 minute to get a uniform thin layer (<0.1 mm) and the piston was kept over the 
thin back membrane for 16 hours to let the adhesive set. The transparent piston was 4 mm 
thick and it has three extending arms with three pinning holes as shown in Fig. 3. 

7.2 Lens chamber liquid filling 

Two holes were drilled on the annular sealing rim for insertion of the optical lens fluid and 
venting of air. Glycerol is used as the liquid because it has both high refractive index (n = 
1.47) and does not swell the PDMS membrane, but other higher index optical fluids 
(SantoLight5267, n = 1.67) are available as well [32,41]. For a liquid lens filled with glycerol 
with density of 1.26 g cm−3, a lens with vertical height of 36 mm can produce a maximum 
hydrostatic pressure difference of Phyd = g· ρg·h = 444.5 Pa between inside and outside of the 
lens. Therefore, if glycerol is inserted into the chamber at atmospheric conditions, the front 
membrane bulges significantly outward, which makes the initial lens optical power high. The 
hydrostatic pressure drop deflection is significantly reduced if the lens reservoir is pressure 
equilibrated and hermetically sealed. Pressure equilibration is achieved when the lens cavity 
is filled in by bath immersion, in this case in a mixture of 3:2 glycerol and water, such that at 
any given point pressure inside and outside the lens are almost equal thus producing little 
deformation of the membranes during the fill operation. The two holes are next hermetically 
sealed while the lens is submerged. The lens is next pulled out of the glycerin bath, rinsed and 
dried. The hermetic seal produces a vacuum head pressure that counteracts fluid motion 
driven by gravity producing a much smaller lens deformation. After sealing of the lens 
chamber, a 0.5 mm thick acrylic washer was attached to the front side of the lens. A second 1 
mm thick washer was attached to the back side with raised supports for the bimorphs. 

7.3 Curved bimorphs 

The pinned piston-actuator design configuration overcomes the twisting problem of the 
curved actuators and provides maximum vertical deflection without compromising force. We 
constructed curved bimorphs actuators from thin sheets of pre-poled PZT-4H (T223-H4CL-
503X for two terminal actuators and T220-H4-503Y for three terminal actuators from Piezo 
System Inc.). The actuator sheet was cut into the curved shape using a diamond rotary saw 
followed by grinding and soldering of the end pin joint. Strong nickel plated steel pins were 
soldered to the outer most point of the free ends of the actuators. One end of each curved 
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actuator was glued to the actuator supports on the rim. The other pinned end of the actuator is 
a free moving end which was inserted in the piston tab receiving holes. 

8. Results and discussion 

8.1 Lens optical test setup 

A Shack-Hartmann wavefront sensor (SHS) (WFS150-7AR from ThorLabs) and a collimated 
LED light source (M625L3-C1 from ThorLabs) with wavelength 625 nm were used for 
measuring lens optical power and wavefront aberration. The setup is also described in Hasan 
et al. [21]. All optical measurements were recorded with the lens standing in vertical position 
which is the worst case scenario for coma aberration. In order to measure the lens focal length 
as a function of applied voltage, we utilized the proximity technique [42]. In the proximity 
technique, the test lens was placed 1.4 cm apart from the wavefront sensor lenslet array in the 
vertical direction and the collimated light source was 50 cm apart from the test lens as shown 
in Fig. 5(a). As the incoming beam into the test lens is collimated, the lens focal length, fL = R 
(radius of curvature of incoming light) -L (separation of test lens and sensor) [42]. 

 

Fig. 5. (a) Proximity technique for lens focal length measurement and (b) 4f optical setup for 
lens aberration measurement. 

For measuring the lens wavefront aberration, we profiled the central 25 mm diameter of 
the possible 32 mm aperture of the lens as discussed in [21,35]. As the diameter of the SHS 
sensor is small (~4.6 mm), the SHS sensor cannot profile the 25 mm diameter aperture of our 
test lens. For this, a 4f afocal relay lens system was constructed that feeds all lens light into 
the sensor as shown in Fig. 5(b) [43]. When the test lens focal length is infinity, the afocal 
relay lens system reduces the incoming light beam diameter by ~5.7 fold. The Shack-
Hartmann sensor was located f2 away from the second relay lens and its pupil diameter was 
selected as 4.3 mm. The focal length of the test lens can also be measured by the relay lens 
system; however, the influence of the test lens focal length on the entire system is greatly 
reduced because of the beam reduction (f2/f1 << 1). Therefore, the proximity technique is 
preferred for focal length measurement and the 4f relay system for measuring wavefront 
aberration. The relay lens setup has RMS wavefront aberration of 0.15 µm. 
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8.2 Optical power measurement 

The lens operation is straightforward. If the voltage is applied and increased in positive 
direction, the three bimorph actuators along with the piston moves inward direction. It makes 
the front membrane convex. For negative actuator voltage, the piston moves outward making 
the lens concave. The proximity technique was used to measure the lens optical power at the 
center of the lens under various actuation voltages. Figure 6 shows the lens optical power as a 
function of actuator voltage. 

 

Fig. 6. Lens optical power (at the lens center) as a function of voltage. The standard deviations 
of lens power are below 1.3%. 

The lens has an offset power of + 0.78D when unpowered. The lens optical power ranged 
between −2.03 D to + 3.57 D for a voltage range of −250 V to + 250 V, which was below the 
depolarization voltage for our bimorph actuators. The lens optical power is linearly 
proportional with the actuator voltage as expected. To demonstrate the quality of the lens 
image, the lens focal length was tuned continuously using the driver circuit and photos were 
taken at different lens power. The test lens was attached to a single lens reflex camera with 40 

 

Fig. 7. Target object photos taken through the VFL lens at (a) −1.2 diopter (b) + 3 diopter. 
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mm focal length. The target object was placed 35 cm apart from the test lens. Figure 7 shows 
two photos taken through our fabricated lens at different lens power. 

The lens electrical power consumption and its mechanical resonance were also measured 
as shown in Fig. 8. The electrical power dissipation for the lens was very small, in the range 
of 10-20 mW. This is good low power performance as these lenses can be operated from 
lightweight rechargeable portable batteries. With an 8 gm, 110 mAh LiPo battery and a DC-
DC high voltage converter (EMCO A series), the lens can continuously operate for about 6 
hours. One of the important advantages for piezoelectric bimorph actuators is the zero static 
power consumption; hence battery lifetime can be significantly extended if the focal change 
frequency is reduced. 

 

Fig. 8. (left) Lens electrical power consumption (at 160 V) as a function of switching 
frequency and (right) lens actuators’ mechanical displacement as a function of frequency. 

The mechanical resonance of the structure determines the speed of response for the lens. 
The frequency response of the lens was measured by observing the deflection of the lens 
piston (via a bouncing laser beam) projected onto a screen as a function of bimorph driving 
frequency. The lens displayed a resonant frequency of about 70 Hz which makes the effective 
response time about 15 milliseconds. The lens was operated continuously for more than 500 
cycles with the driving circuit in the voltage range of −220 V to + 220 V without observing 
any failure or significant performance degradation as well. It was also actuated intermittently 
for more than 6 months without any failure. 

9. Wavefront profiling and aberration measurements 

To evaluate lens optical performance and image quality, the lens aberrations were measured 
with the lens in the upright position by the SHS using 4f optical test setup (shown in Fig. 
5(b)). The wavelength of the collimated test light source was 0.625 µm. The aberration values 
at no actuation ( + 0.78 D), lens convex, and concave states are reported in Table 2. 

Table 2. Lens Aberrations at different optical power. 

Aberration Optical power + 0.78 D Optical power + 3 D Optical power −1 D 

Astigmatism 45◦ −0.364 µm −0.354 µm 0.376 µm 

Astigmatism 90◦ −0.380 µm 0.343 µm 0.400 µm 

Trefoil X −0.008 µm −0.035 µm −0.056 µm 

Trefoil Y −0.007 µm −0.385 µm 0.070 µm 

Coma X 0.298 µm −0.208 µm −0.153 µm 

Coma Y −0.7400 µm −0.264 µm −0.608 µm 

Spherical −0.068 µm −0.188 µm −0.119 µm 

RMS Aberration 0.958 µm 0.733 µm 0.846 µm 
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The main contributor for RMS wavefront aberration at + 0.78 D (no actuation) was coma. 
Coma aberration is proportional to the third power of the radius of the lens and inversely 
proportional to the membrane tension as shown in Eq. (12). Coma aberration was worst at no 
actuation and it decreased significantly at higher optical power. Spherical aberration was very 
small at no actuation, and it increased a little at high optical power. The low values of 
spherical aberration are indicative of the tension dominated membrane deflection [35]. The 
value of trefoil aberration also increased from negligible value to 0.385 µm as the lens optical 
power increased because the actuators applied forces at three different points 120◦ apart along 
the periphery. All these aberration values except coma were relatively small and below 0.5 
µm which is the approximate RMS value of human lens aberration [44]. The 80% encircled 
energy radii of the point spread function (PSF) were measured at three different lens optical 
powers as well. The values were 0.1◦, 0.065◦, 0.065◦ at lens optical power + 0.78 D, + 3 D and 
−1D, respectively. 

10. Conclusion 

A tunable-focus liquid lens actuated by low-profile piezoelectric bimorph actuators has been 
demonstrated. The lens has aperture diameter 32 mm, footprint diameter 52 mm, optical 
power range 5.6 D, electrical power consumption less than 20 mW, and resonant frequency 
70 Hz. The lens weighs 14.4 gm. The lens RMS wavefront aberration is in the range of 0.73 
to 0.95 µm. All these criteria make this lens suitable for adaptive eyeglass application. 
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