
Memory Management and Data Storage

TM250TRE.00-ENG

TM250

2011/03

2 TM250 - Memory Management and Data Storage

Requirements
Training modules: TM213 - Automation Runtime

TM246 - Structured Text (ST)

Software Automation Runtime 3.08
Automation Studio 3.0.90

Hardware None

Table of contents

TM250 - Memory Management and Data Storage 3

TABLE OF CONTENTS

1 INTRODUCTION... 4

1.1 Objectives.. 4

2 VARIABLES, CONSTANTS AND DATA TYPES.. 5

2.1 The basics... 5
2.2 Basic data types.. 11
2.3 Arrays, structures and enumeration.. 13
2.4 Strings.. 20
2.5 Addresses and memory size... 24

3 MEMORY AND MEMORY MANAGEMENT... 26

3.1 Memory initialization.. 26
3.2 Copying and initializing memory... 27

4 WORKING WITH LIBRARIES.. 29

4.1 General information... 29
4.2 Creating user libraries... 33
4.3 B&R standard libraries samples.. 35

5 THE BASICS OF DATA PROCESSING... 37

5.1 Alignment... 37
5.2 Data formats.. 38
5.3 Data consistency... 39

6 STORING AND MANAGING DATA.. 40

6.1 Reserving memory blocks... 40
6.2 Data objects... 41
6.3 Storing files in the file system... 42
6.4 Databases.. 43

7 DATA TRANSFER AND COMMUNICATION.. 44

7.1 General information about communication.. 44
7.2 Protocols.. 45
7.3 Communication libraries.. 46

8 SUMMARY.. 47

Introduction

4 TM250 - Memory Management and Data Storage

1 INTRODUCTION

This training module deals with the different possibilities that are available to effectively format, manage
and structure data.

One of the most important aspects that will be covered has to do with the correct usage of basic and
user-defined data types in the areas of programming, data storage and communication.

Using variables, data types and constants correctly not only helps prevent errors, it also improves the
overall flexibility and consistency of the application at hand.

Memory and variables Data processing and storage Communication and data exchange

As a whole, the information presented here is meant to help determine which tools and procedures are
available for processing and defining data.

In addition, it is meant to provide an overview of possible storage formats and locations for data in order
to aid in the decision-making process when solving various tasks.

All of the programming examples included here have been written in the Structured Text programming
language. IEC text format has been used for the declarations of variables, data types and constants.

1.1 Objectives

You will be learning about the following:
• ... Initializing and using variables
• ... Using enumerated and user-defined data types
• ... The correct usage of B&R standard libraries
• ... How to create a user library
• ... The basics of data preparation and processing
• ... Basic information about data formats
• ... An overview of the different ways that data can be stored
• ... Information about different methods of communication
• ... Using B&R library samples

Variables, constants and data types

TM250 - Memory Management and Data Storage 5

2 VARIABLES, CONSTANTS AND DATA TYPES

Fixed memory addresses have long been a thing of the past in programming; these days, programming
takes place using uniquely named symbolic elements. These elements are called variables.

Basic data types determine the value range of a variable in addition to how much space it needs in
memory. Data types also establish whether values are signed or unsigned, whether they include decimal
places, text or even dates or times.

The following sections will provide a brief explanation of numeral systems, basic data types, errors and
user-defined data types.

2.1 The basics

At the most basic level, any computer is capable of displaying and calculating values through the inter-
pretation and grouping of the electrical states 0 and 1. It is useful to be familiar with these basic functions.

If you can understand this system, it makes programming a system and localizing errors that may occur
much easier.

2.1.1 The binary and hexadecimal systems

A bit is the absolute smallest unit of information and can only take
on the states 0 and 1. According to the IEC1, a bit is regarded as
a BOOL value.

Other data types consist of multiple bits that are divisible by eight.
The next largest unit is called a byte. A byte is therefore made up
of eight bits.

The bits within a byte are numbered from right to left, from Bit 0 to
the most significant value Bit 7. Bit 2 (which is actually the 3rd bit)
therefore has a decimal value of 4.

Binary representation of a byte

A byte can be split up into two half-bytes. These half-bytes are often
referred to as "nibbles". Logically, the lower nibble is called the low
nibble, and the higher nibble is called the high nibble.

The most significant bits are therefore to be found in the high nibble.

High nibble and low nibble

Each bit within a byte can take on the value 0 or 1. A byte can take on values from 0 to 255, which
corresponds to 256 different states.

Bit pattern Bit number Decimal value 2BitNumber

00000001 0 1 20

00000010 1 2 21

00000100 2 4 22

00001000 3 8 23

Table: The values of individual bits within a byte

1 The IEC 61131-3 standard specifies data types, programming languages and file formats that are not de-
pendent on any particular platform.

Variables, constants and data types

6 TM250 - Memory Management and Data Storage

Bit pattern Bit number Decimal value 2BitNumber

00010000 4 16 24

00100000 5 32 25

01000000 6 64 26

10000000 7 128 27

Table: The values of individual bits within a byte

EXAMPLE:

Two binary numbers will be added together in this example.

+ 00000001 One
00000001 One

= 00000010 Two (not decimal 10!)
Table: Addition of binary numbers with carry over

The following applies:

0 + 0 = 0

0 + 1 = 1

1 + 1 = 0 + carry over to the next bit

With negative numbers in the binary system, the highest bit is reserved for the sign. As a result, 7 bits
are left to represent the value.

Bit 7 is the preceding sign

X0000000 Bits 0 through 6 for the numeric range

X1111111 The largest positive number is decimal 127
Table: Bit pattern for negative integer values

Negative numbers are put together using two's complement. The bit pattern is created from the positive
decimal number. This bit pattern is then inverted, and 1 is added. The result then corresponds to the
bit pattern for the negative number.

Variables, constants and data types

TM250 - Memory Management and Data Storage 7

Representation of negative numbers in the binary system

EXAMPLE:

Representation of negative numbers in the binary system

00000011 Number is decimal "3"

11111100 Invert all bits

+ 00000001 Add 1

= 11111101 Number is decimal "-3"
Table: Calculating the two's complement

The correct representation of numbers depends on the data type.

If a negative value with a signed data type (SINT, INT, DINT) is assigned to an unsigned data type (USINT,
UINT, UDINT), then the bit pattern will remain the same. The value will appear differently, however.

Variables, constants and data types

8 TM250 - Memory Management and Data Storage

EXAMPLE:

This example will illustrate the relationship between data and data types.

Declaration VAR

 varUnsigned : USINT := 0;

 varSigned : SINT := 0;

END_VAR

Program code varSigned := -22; (*Bit pattern 1110 1010 *)
varUnsigned := varSigned;

Table: Assigning an unsigned data type to a signed data type

The "varUnsigned" variable is displayed as decimal 234, which corresponds to the bit pattern
1110 1010.

The bit pattern is not changed, but a different value is displayed due to the change in data type
(unsigned).

Different data types display the same data differently.

HELP:

Programming \ Variables and data types \ Variables \ Data types \ Basic data types \ INT

Programming \ Variables and data types \ Variables \ Bit addressing

In contrast to the decimal system, the hexadecimal system provides 16 values (0 through F) for a single
position.

0000 Decimal 0 Hex 0

0001 Decimal 1 Hex 1

0010 Decimal 2 Hex 2

0011 Decimal 3 Hex 3

0100 Decimal 4 Hex 4

0101 Decimal 5 Hex 5

0110 Decimal 6 Hex 6

0111 Decimal 7 Hex 7

1000 Decimal 8 Hex 8

1001 Decimal 9 Hex 9

1010 Decimal 10 Hex A

1011 Decimal 11 Hex B

1100 Decimal 12 Hex C

Table: Converting binary numbers to hexadecimal

Variables, constants and data types

TM250 - Memory Management and Data Storage 9

1101 Decimal 13 Hex D

1110 Decimal 14 Hex E

1111 Decimal 15 Hex F
Table: Converting binary numbers to hexadecimal

EXAMPLE:

Nibbles and hexadecimal

0100 1011 Corresponds to 75 (64 + 8 + 2 + 1 = 75)

0100 High nibble = A

1011 Low nibble = B

0100 1011 Both nibbles = 16#4B = 75
Table: Converting binary to the hexadecimal system

Nibbles can simply be copied from the binary to the hexadecimal number system and written next to
each other.

EXAMPLE:

Memory depth in the binary and hexadecimal systems

Binary Hexadecimal Memory depth

00000000 16#00 1 bytes

00000000 00000000 16#0000 2 bytes

00000000 00000000 00000000 00000000 16#00000000 4 bytes
Table: Memory depth and representation in binary and hexadecimal

ADVICE:

Hexadecimal representation of numbers is primarily used when logbook entries or addresses
are displayed.

Localizing errors in signed and unsigned variables is more effective when comparing bit pat-
terns. The variable monitor offers the option of displaying variable values in binary, decimal or
hexadecimal.

The IEC standard specifies displaying a binary number with the literal 2#0000_1001 and a
hexadecimal number with 16#09 in the program code.

HELP:

Programming \ Standards \ Literals in IEC languages

2.1.2 Comparing variables and constants

Variables are locations in memory that can be changed and take on new values at runtime. Some ex-
amples of variables include digital and analog inputs/outputs as well as auxiliary flags.

In contrast to variables, constants are assigned a value when they are being declared. This value can
no longer be changed at runtime. Constants include things like limit values or range limits.

Variables, constants and data types

10 TM250 - Memory Management and Data Storage

Any of the available basic data types can be used in either case (see Chapter 2.2).

Assigning a value to a constant

1) Declare the constant.

Create the MAX_INDEX variable in the declaration window. It should be of data type USINT. Select
the option "Constant" and assign the value 123.

2) Assign a value to the constant.

In the program code, assign the new value 43 to the constant.

3) Evaluate the output from the compiler.

Compile the program and analyze the output from the compiler.

HELP:

Programming \ Variables and constants \ Variables \ Constants

Constants can also be used to initialize arrays (see Chapter 2.3.1). In order to do this, however, the
project setting "Allow extension of IEC standards" needs to be enabled.

HELP:

Project Management \ The Workspace \ General project settings \ Settings for IEC compliance

2.1.3 Declaring variables, constants and data types

This training manual will not go into much detail about the Automa-
tion Studio user interface.

At this point, we would like to show you how to open the variable
and data type declaration windows.

Variables and data types can be configured in either a table editor
or a text editor.

Opening the declaration window as a
text or table editor

The variable declaration window

Variables and constants are generally only stored in files with the extension .var. A variable declaration
file with the name of the program is typically created whenever a new program is inserted into the project.

The data type declaration window

User-defined, enumerated and composite data types are always stored in files with the extension .typ.
When a new program is inserted into a project, the user is always prompted to create a data type dec-
laration file as well. It is given the same name as the program.

HELP:

Programming \ Editors \ Table editors \ Declaration editors \ Variable declaration

Programming \ Editors \ Table editors \ Declaration editors \ Data type declaration

Programming \ Editors \ SmartEdit

Variables, constants and data types

TM250 - Memory Management and Data Storage 11

Initialization

Variables, constants, data types and structure variables can be initialized directly in the declaration editor.

HELP:

Programming \ Editors \ Table editors \ Declaration editors \ Variable declaration

Programming \ Editors \ Table editors \ Declaration editors \ Data type declaration

Programming \ Editors \ General operation \ Dialog box for initializing structure types and in-
stances

Scope

The scope of declared variables and data types depends on the position of the declaration file in the
logical view.

HELP:

Programming \ Variables and data types \ Scope of declarations

2.2 Basic data types

Primitive data types are also called basic data types. These data types form the basis for all other com-
posite data types.

The following list contains all of the basic data types in line with the IEC 61131-3 standard as well as
their areas of use.

Binary / Bit
series

Signed inte-
gers

Unsigned in-
tegers

Floating
point

String Time, date

BOOL SINT USINT REAL STRING TIME

WORD INT UINT LREAL WSTRING DATE_AND_TIME
(DT)

DWORD DINT UDINT DATE

TIME_OF_DAY
(TOD)

Table: Overview of IEC data types

A complete list of basic data types, their areas of use and range of values can be found in the Automation
Studio online help documentation.

HELP:

Programming \ Variables and data types \ Variables \ Data types

ADVICE:

One feature of IEC data types is that they are completely independent of the platform being
used. This means that IEC data types always have the same range of values regardless of the
processor architecture or program code where they are being used.

Variables, constants and data types

12 TM250 - Memory Management and Data Storage

2.2.1 Data type conversion

During programming, it may become necessary to convert one data
type to another.

When assigning a variable of a data type with a smaller range of
values to one with a larger range, implicit conversion is carried out.
When the opposite is done (the range of values becomes smaller),
the user has to handle the conversion in the program code itself, i.e.
explicitly.

Data type conversion

Implicit data type conversion

Implicit data type conversion occurs when the compiler handles the conversion of one data type to
another.

EXAMPLE:

In this program code, a type with a larger range of values takes on the value from a data type
with a smaller range.

Declaration VAR

 bigValue : DINT := 0;

 smallValue: SINT := 0;

END_VAR

Program code bigValue := smallValue;

Table: Implicit conversion

This type of assignment guarantees that the value will have enough space in the new data
type. The user doesn't have to perform the conversion himself. The compiler carries out the
conversion implicitly.

Explicit data type conversion

If a value of a data type with a larger range of values is assigned to a data type with a smaller range,
then it's up to the user to carry out the conversion.

EXAMPLE:

Declaration VAR

 bigValue : DINT := 0;

 smallValue: SINT := 0;

END_VAR

Program code smallValue:= bigValue;

Table: Explicit conversion required

In this case, the compiler will output the following message:

Error 1140: Incompatible data types: Cannot convert DINT to SINT.

The functions in the "AsIecCon" library can be used to carry out the conversion. This library is included
automatically when an Automation Studio project is created.

The conversion in the example above can be carried out properly as shown below.

Variables, constants and data types

TM250 - Memory Management and Data Storage 13

The expression to be converted is placed inside parentheses with the conversion function directly pre-
ceding it.

EXAMPLE:

Declaration VAR

 bigValue : DINT := 0;

 smallValue: SINT := 0;

END_VAR

Program code smallValue:= DINT_TO_SINT(bigValue);

Table: Carrying out explicit conversion

HELP:

Programming \ Libraries \ IEC 61131-3 functions \ AsIecCon \ Function blocks and functions

2.3 Arrays, structures and enumeration

User-defined data types can be created that are based on the different primitive data types. This method
is called derivation. User-defined data types consist of elements from the basic data types.

These derived data types include the following:
• Arrays and multi-dimensional arrays
• Structures
• Direct derivation and subranges
• Enumerations

HELP:

Programming \ Variables and data types \ Data types \ Derived data types

2.3.1 Arrays

Unlike variables of a primitive data type, arrays are comprised of several variables of the same data
type. Each individual element can be accessed using the array's name and an index value.

The index used to access values in the array may not fall outside of the array's actual size. The size of
an array is defined when the variable is declared.

In the program, the index can be a fixed value, a variable, a constant or an enumerated element.

An array of data type INT with a range of 0 to 9 corresponds to 10 different array elements.

Variables, constants and data types

14 TM250 - Memory Management and Data Storage

Declaring and using arrays

When an array is declared, it must be given a data type and a dimension. The usual convention is for
an array's smallest index value to be 0. It is important to note in this case that the maximum index for
an array of 10 elements is 9.

EXAMPLE:

Declaration VAR

 aPressure : ARRAY[0..9] OF INT := [10(0)];

END_VAR

Program code (*Assigning the value 123 to index 0*)
aPressure[0] := 123;

Table: Declaring an array of 10 elements, starting index = 0

If attempting to access an array element with index 10, the compiler outputs the following error
message:

Program code aPressure[10] := 75;

Error message Error 1230: The constant value '10' is not in range
 '0..9'.

Table: Accessing an array index outside of the valid range

ADVICE:

If an array of 10 elements should be declared, it can be done in the declaration editor with either
"USINT[0..9]" or "USINT[10]". In both of these cases, an array with a starting index of 0 and a
maximum index of 9 will be created.

Creating the "aPressure" array

1) Create a new program called "arrays".

2) Open the variable declaration window.

3) Declare the "aPressure" array.

The array should contain 10 elements. The smallest array index starts at 0. The data type must be
INT.

4) Use the array in program code.

Use the index to access the array in the program code. Use fixed numbers and constants for this.

5) Force an invalid array access in the program code.

Access index value 10 of the array and then analyze the output in the message window.

Declaring an array using constants

Since using fixed numeric values in declarations and the program code itself usually leads to program-
ming that is unmanageable and difficult to maintain, it is a much better idea to use numeric constants.

The upper and lower indexes of an array can be defined using these constants. These constants can
then be used in the program code to limit the changing array index.

Variables, constants and data types

TM250 - Memory Management and Data Storage 15

EXAMPLE:

Declaration VAR CONSTANT

 MAX_INDEX : USINT := 9;

END_VAR

VAR

 aPressure : ARRAY[0..MAX_INDEX] OF INT ;

 index : USINT := 0;

END_VAR

Program code IF index > MAX_INDEX THEN

 index := MAX_INDEX;

END_IF

aPressure[index] := 75;

Table: Declaring an array using a constant

ADVICE:

The program code has now been updated so that the index used to access the array is limited
to the maximum index of the array. An advantage of this is that arrays can be resized (larger
or smaller) without having to make a change in the program code.

HELP:

Programming \ Variables and data types \ Data types \ Derived data types \ Arrays

Calculating the sum and average value

The average value should be calculated from the contents of the "Pressure" array. The program has to be
structured in such a way that the least amount of changes to the program are necessary when modifying
the size of the array.

1) Calculate the sum using a loop.

Fixed numeric values may not be used in the program code.

2) Calculate the average value.

The data type of the average value must be the same as the data type of the array (INT).

Multi-dimensional arrays

Arrays can also be composed of several dimensions. The declaration and usage in this case can look
something like this:

Variables, constants and data types

16 TM250 - Memory Management and Data Storage

EXAMPLE:

Declaration VAR

 Array2Dim : ARRAY[0..6,0..6] OF INT;

END_VAR

Program
code

Array2Dim[3,3] := 11;

Accessing the value in Column
3, Row 3

Table: Declaring and accessing a 7x7 two-dimensional array

ADVICE:

An invalid attempt to access an array in the program code using a fixed number, a constant or
an enumerated element will be detected and prevented by the compiler.

An invalid attempt to access an array in the program code using a variable cannot be detected
by the compiler and may lead to a memory error at runtime. Runtime errors can be avoided by
limiting the array index to the valid range.

The IEC Check library can be imported into an Automation Studio project to help locate runtime errors.

HELP:

Programming \ Libraries \ IEC Check library

2.3.2 Direct deravation and subranges

In addition to arrays, other derived data types can also be derived from basic data types.

It is possible to derive these derived data types directly from the basic data types. Doing so creates a
new data type with a new name that has the same properties as the basic data type.

New data types can also be given an initial value. As a result, all of the variables of this data type have
this configured value.

A valid value range can also be specified for direct composite data types. It is then only possible to assign
values to variables of this type that fall within the configured value range.

Variables themselves can also be assigned a subrange.

Variables, constants and data types

TM250 - Memory Management and Data Storage 17

EXAMPLE:

Variable with a subrange VAR

 varSubRange : USINT(24..48);

END_VAR

Data type with a subrange TYPE

 Voltage_typ : USINT(12..24);

END_TYPE

Table: Declaring a variable and data type with a subrange

HELP:

Programming \ Variables and data types \ Data types \ Derived data types \ Direct derivation

Programming \ Variables and data types \ Data types \ Derived data types \ Subranges

Declaring a direct derived type with a subrange

A new data type "pressure_typ" should be derived. The basic data type should be INT. The valid range
of values should fall between 6500 and 29000. Use numeric constants to define this value range.

1) Declare a direct composite type.

Open up the data type declaration editor and declare the new type by giving it the name
"pressure_typ" and assigning "INT" as its basic data type.

2) Declare the constants.

Open up the variable declaration editor, create the constants "MIN_VAL" and "MAX_VAL" and assign
them the values given above.

3) Use the constants to define the subrange of "pressure_typ".

Now use the two constants to set the value range for the new data type.

4) Test your results.

Declare a new variable of data type "pressure_typ" in the variable declaration editor. Then try to
assign a value outside of the valid range of values in the program code. Take a look at the compiler
output in the message window.

2.3.3 Structures

A structure – also known as user-defined data type – is the grouping together of a collection of elements
of basic data types or structures that are addressed using a shared name. Each of the individual elements
has its own name.

Structures are primarily used to group together data and values that have a relationship to each other.
An example would be a recipe that always uses the same ingredients but, depending on the recipe, in
different amounts.

Structure declaration in Automation Studio

Variables, constants and data types

18 TM250 - Memory Management and Data Storage

EXAMPLE:

Structure declaration TYPE

 main_par_recipe_typ : STRUCT

 price : REAL;

 setTemp : REAL;

 milk : REAL;

 sugar : REAL;

 coffee : REAL;

 water : REAL;

 END_STRUCT ;

END_TYPE

Variable declaration VAR

 AnyCoffee : main_par_recipe_typ;

END_VAR

Usage in the program
code

(*price for AnyCoffee*)

AnyCoffee.price := 1.69;

Table: Declaring a structure, usage in the program code

HELP:

Programming \ Variables and data types \ Data types \ Composite data types \ Structures

Programming \ Editors \ Table editors \ Declaration editors \ Data type declaration

Declaring the structure "recipe_typ"

Declare a structure with the name "recipe_typ".

This structure should include the following elements
• price
• milk
• sugar
• coffee
• water

Any data type can be chosen for each element; it depends on how the elements themselves are used
in the program.

1) Declare the structure.

Open the declaration editor and create a new structure with the "Add structure type" icon. Assign it
the name "recipe_typ". Add the elements according to the list above.

2) Initialize the elements in the program code.

Declare a new variable with the name "cappuccino" using the new data type. Use the variable in your
program code and initialize the elements with values.

Arrays of structures

Structures can also be declared as arrays. The same rules apply in this case as with arrays of basic data
types. Once again, an index is used for access and must be limited in the application so that memory
is not accessed incorrectly.

Variables, constants and data types

TM250 - Memory Management and Data Storage 19

EXAMPLE:

Declaration VAR

 aCoffee : ARRAY[0..5] OF recipe_typ;

END_VAR

Program code aCoffee[0].water := 12;

Adding together the values of the "sugar" element

Declare an array of "recipe_typ" structures. This array should be dimensioned for 10 elements. Initialize
the array with random values.

Use constants instead of fixed values. Add together the "sugar" element from all of the structures and
determine how much sugar is needed on average for your production.

2.3.4 Enumerated data types

Enumeration is basically another way of referring to a list of values. It is therefore possible to use enu-
merated data types with variables. Instead of the value of the listed element, the variable contains the
corresponding text.

The values of the enumerated elements are numbered automatically in ascending order beginning with
0. Initial values can also be assigned.

It often is a good idea to use enumerated types and the elements they contain to indicate the different
states of a machine.

EXAMPLE:

Enumerated type
declaration

TYPE

 Color :

 (

 red,

 yellow,

 green

);

END_TYPE

Enumerated type declaration

Variable declaration VAR

 stepColor : Color;

 result : USINT;

END_VAR

Program code CASE stepColor OF

 red:

 result := 1;

 yellow:

 result := 2;

 green:

 result := 3;

END_CASE

Enumerated type displayed in
the variable monitor

Table: Declaring an enumerated type, usage in the program code

Variables, constants and data types

20 TM250 - Memory Management and Data Storage

HELP:

Programming \ Variables and data types \ Data types \ Derived data types \ Enumeration

2.4 Strings

Strings refer to the sequential arrangement of individual bytes. Each byte contains an alphanumeric
character or a control character. When put together, this chain of characters comprises a string.

If a string with 10 characters is defined, then it has 10 usable characters. Every string is terminated with a
binary "0", which doesn't count as a usable character. In other words, a string with 10 characters actually
takes up 11 bytes in memory.

If only a part of the usable characters is actually used, then the contents of memory following the binary
0 remain undefined.

String of 10 characters, zero-termination after "Hello"

The table below shows how the the declaration (including initialization) is handled. The number of usable
characters is specified inside the brackets. The assignment operator allows a string to take on a text
either in the declaration or in the program code itself.

EXAMPLE:

Declaration VAR

 sDescription : STRING[80] := 'Description';

END_VAR

Program code sDescription := 'Hello World';

Table: Declaring a string, usage in the program code, assigning a text

If a string is assigned to the string variable that is too long (i.e. longer than when the string variable was
declared), then the string is truncated by the compiler.

HELP:

Programming \ Variables and data types \ Data types \ Basic data types \ STRING, WSTRING

Programming \ Standards \ Literals in IEC languages

Programming \ Standards \ ASCII tables

Using a string variable

Declare a string variable called "recipe_typ". It should contain 10 usable characters. Then try to assign it
the text "Automation Studio" in the program code and take a look at the results in the variable monitor.

1) Declare the string variable "sDescription".

Variables, constants and data types

TM250 - Memory Management and Data Storage 21

2) Use it in your program.

3) Check the results in the variable monitor.

2.4.1 String functions

Strings can be used in several different ways in program code.

The possibilities include the following:
• String comparison
• Conversion to string
• Conversion from string
• String manipulation

Most string operations require the use of library functions.

String comparison

Strings can be checked against each other for sameness. The result is either equal or unequal.

EXAMPLE:

Declaration VAR

 sTextA: STRING[80] := 'Perfection';

 sTextB: STRING[80] := ' in Automation';

 equal : BOOL;

END_VAR

Program code IF stringa = stringb THEN

 equal := TRUE;

ELSE

 equal := FALSE;

END_IF

Table: String comparison

Since the two strings are not identical, the result is "equal := FALSE;".

ADVICE:

Some programming languages do not allow strings to be assigned with an assignment operator
or compared like a numeric variable using an IF statement.

In these cases, functions from a string handling library are necessary.

ADVICE:

If a closer look at the differences between the two strings is needed, the "brsstrcmp" function
from the "AsBrStr" library can be used.

HELP:

Programming \ Libraries \ Configuration, system information, runtime control \ AsBrStr

Programming \ Libraries \ Configuration, system information, runtime control \ AsBrWStr

Functions are also necessary for the advanced handling of strings. The next section provides an overview
about available libraries and explains where they can be used.

Variables, constants and data types

22 TM250 - Memory Management and Data Storage

Libraries available with functions for handling strings:
• Standard
• AsIecCon
• AsBrStr
• AsBrWStr
• AsString

String conversion

As long as the format is correct, it is possible to convert the contents of a string to a numeric value. The
reverse is also possible. These conversion functions are a couple of the many functions included in the
AslecCon library, which is automatically added to every new Automation Studio project.

EXAMPLE:

The contents of the "sPressure" variable should be converted to the numeric value "Pressure".

Declaration VAR

 Pressure : REAL;

 sPressure : STRING[80] := '12.34';

END_VAR

Program code Pressure := STRING_TO_REAL(sPressure);

Table: Converting from String to Real

Conversion in the reverse direction looks like this:

Declaration VAR

 Pressure : REAL;

 sPressure : STRING[80] := '12.34';

END_VAR

Program code sPressure := REAL_TO_STRING(Pressure);

Table: Converting from Real to String

HELP:

Programming \ Libraries \ IEC 61131-3 functions \ AsIecCon

String manipulation

Not only can strings be compared with one another or converted to numeric values, it is also possible to
join strings together (concatenation), search for partial strings within longer strings, replace text or even
place strings at a certain position in another string.

These tasks can all be handled by functions from the "STANDARD" library.

Variables, constants and data types

TM250 - Memory Management and Data Storage 23

EXAMPLE:

Declaration VAR

 sSourceString : STRING[80] := 'Strings in AS';

 sFindString : STRING[80] := 'in';

 position : INT;

END_VAR

Program code position := FIND(sSourceString, sFindString);

Table: Determining the position of a string within another string

The result is the value 9 since the string being looked for begins at the 9th position in the string
being searched.

HELP:

Programming \ Libraries \ IEC 61131-3 functions - STANDARD \ STRING handling functions

Appending strings

Connect two strings to each other. Use the "CONCAT" function from the "STANDARD" library.

1) Declare the variables.

Declare the variable "sText1" with the initial value "Hello ", variable "sText2" with the initial value
"World!" and the variable sResult.

2) Call the "CONCAT" function.

3) Check the results in the variable monitor.

Additional information

Functions from the "STANDARD" library can be used to manipulate strings. The functions always check
the available data length so that it is impossible for memory overruns to occur.

The data that can be specified is usually limited to 32 kB, however. String operations that are able to
manipulate larger amounts of data are available in the "AsBrStr" and "AsBrWStr" libraries.

ADVICE:

When calling functions from the "AsBrStr" library, it's important to note that the system doesn't
check if the result string has enough space in the target variable. If the programming contains
errors, memory overruns might occur. For this reason, it's important to take a look at the ap-
plication and make sure that the memory reserved for the target variable is sufficient for the
string operation.

The final length of the string can be determined with the "brsstrlen" function from the "AsBrStr"
library or "LEN" from the "STANDARD" library.

HELP:

Programming \ Libraries \ Configuration, system information, runtime control \ AsBrStr

Programming \ Libraries \ Configuration, system information, runtime control \ AsBrWStr

Variables, constants and data types

24 TM250 - Memory Management and Data Storage

2.5 Addresses and memory size

Addresses

All variables, constants, arrays and structures that are created in the declaration window are assigned
a memory address by the compiler. This address marks the starting point in the controller's memory of
the data in the corresponding variable.

At runtime, this memory address can no longer be changed; therefore, these variables are referred to as
"static variables". The address where a variable is located can be determined with the ADR() function.

A variable's memory address is particularly important when transferring data to functions and function
blocks. In these cases, the starting address of the data is passed along to begin processing the data.
see Chapter 4

EXAMPLE:

Declaration VAR

 aCoffee : ARRAY[0..5] OF recipe_type;

 adr_index_0 : UDINT;

END_VAR

Program code adr_index_0 := ADR(aCoffee[0]);

Table: Determining the address of element 0

ADVICE:

Although the memory address can be determined, it must never be used in the program code
as a fixed value. This is because a new address is assigned by the operating system every
time the controller is booted.

Determining addresses

Use the ADR() function to determine the memory address of the "aCoffee" array. The addresses of Index 0
and Index 1 should be ascertained. Calculate the difference between the two addresses and see whether
the results are what you expected.

Memory size

Static variables take up a certain amount of memory. This depends on the data types chosen for each
of the variables. It is also sometimes necessary to know exactly how much memory is needed. Memory
size can be determined using the sizeof() function.

For arrays, the total amount of memory is a multiple of the data types being used in the array. The number
of array elements can also be calculated.

Variables, constants and data types

TM250 - Memory Management and Data Storage 25

EXAMPLE:

Declaration VAR

 aCoffee : ARRAY[0..5] OF recipe_type;

 size_complete : UINT;

 size_single : UINT;

 num_elements : UINT;

END_VAR

Program code size_complete := SIZEOF(aCoffee);
size_single := SIZEOF(aCoffee[0]);
num_elements := size_complete / size_single;

Table: Memory required by an array and its elements, number of elements

Determining memory size

Determine the amount of memory used by the entire "aCoffee" array; also determine the size of the
element with index 0. Calculate the number of array elements.

HELP:

Programming \ Libraries \ IEC 61131-3 functions \ OPERATOR \ Address and length functions
\ ADR

Programming \ Libraries \ IEC 61131-3 functions \ OPERATOR \ Address and length functions
\ SIZEOF

Memory and memory management

26 TM250 - Memory Management and Data Storage

3 MEMORY AND MEMORY MANAGEMENT

When designing an application, it is necessary to understand how the system is going to behave. It's
important to know how variables, constants, arrays and structures are initialized and what happens to
them during booting.

3.1 Memory initialization

Variables and constants can be initialized when they are declared. If a variable is not assigned an initial
value, it always receives the value "0" when the controller boots. Constants must be assigned an initial
value.

Initial values for arrays and structures can be assigned in the variable declaration editor. In addition,
individual elements of structures can also be assigned with an initial value when the data type is being
declared.

Variable declaration window with variables, constants, arrays and structures

All variables and constants are located in the controller's DRAM. If programming is done incorrectly, e.g.
by accessing an array index outside of the valid range, it's even possible to manipulate the values of
constants.

If variable values should remain after the controller has been restarted, then the "RETAIN" option can
be selected during the declaration. Data is then stored in the controller's battery-buffered SRAM during
a power failure or restart. More information about this can be found in "TM213 - Automation Runtime".

ADVICE:

When creating an application, it's important to consider how variables are affected in memory
when power failures or restarts occur.

The application must be able to boot with the correct parameters after any kind of initialization
or restart.

HELP:

Programming \ Editors \ Table editors \ Declaration editors

Programming \ Editors \ General operation \ Dialog boxes for input support

Programming \ Variables and data types \ Variables \ Variable remanence

Real-time operating system \ Method of operation \ Module / data security \ Power-off handling

Real-time operating system \ Method of operation \ Module / data security \ Power-on handling

Programming \ Libraries \ IEC Check library

Memory and memory management

TM250 - Memory Management and Data Storage 27

3.2 Copying and initializing memory

Copying

Depending on the programming language and environment being used, there are several different meth-
ods available for copying data. In Structured Text, data from Variable A can be copied to Variable B
through assignment. For this to work, however, the source and target data types must be identical; oth-
erwise, a compiler error results.

If data from one data types needs to be copied to a different data type, this is possible using the "brsmem-
cpy()" function. The addresses of both the source memory and target memory as well as the number of
bytes to be copied need to be specified in this case.

EXAMPLE:

Declaration VAR

 aTarget : ARRAY[0..4] OF USINT;

 aSource : ARRAY[0..4] OF USINT;

END_VAR

Program code brsmemcpy(ADR(aTarget), ADR(aSource), SIZEOF(aTarget));

Table: Copying a portion of memory with brsmemcpy()

It is important to make sure that the target memory is large enough for the data block being copied.
The functions sizeof() and min() can be used to determine the size of the smallest memory area. This
ensures that only the bytes that have space in the target memory are copied over.

EXAMPLE:

Declaration VAR

 aTarget : ARRAY[0..2] OF USINT;

 aSource : ARRAY[0..4] OF USINT;

 min_len : USINT := 0;

END_VAR

Program code min_len := MIN(SIZEOF(aTarget), SIZEOF(aSource));
brsmemcpy(ADR(aTarget), ADR(aSource), min_len);

Table: Copying limited memory areas with "min()"

Initializing

Memory areas with a different structure and data type can be initialized when the variable is being
declared. It is sometimes necessary to overwrite certain data areas in the program. This is possible in
the program code using the brsmemset() function.

EXAMPLE:

Declaration VAR

 aTarget : ARRAY[0..4] OF USINT;

END_VAR

Program code brsmemset(ADR(aTarget), 0 , SIZEOF(aTarget));

Table: Initializing a memory area with "brsmemset()"

Memory and memory management

28 TM250 - Memory Management and Data Storage

HELP:

Programming \ Libraries \ Configuration, system information, runtime control \ AsBrStr

Initializing and copying memory

1) Declare two variables.

Both variables are to be of user-defined data type "recipe_typ".

2) Initialize the first structure with the brsmemset() function.

Initialization should not be done cyclically, but by using a command.

3) Copy the data.

Copy the contents of the first structure to the second structure. Use the brsmemcpy() function for
this. Pay attention to the length of the data when using these functions.

Working with libraries

TM250 - Memory Management and Data Storage 29

4 WORKING WITH LIBRARIES

Libraries allow software to be packaged in compact units and reused
whenever necessary. Libraries therefore act as containers for func-
tions, function blocks, constants and data types.

This section will provide a brief introduction to the terminology of li-
braries as well as information about how to use functions and func-
tion blocks correctly.

Later on, we will also discuss how to create user libraries, which
make it possible to store different functions that the user has already
created and implemented. The use of sample programs from B&R
standard libraries will also be demonstrated.

Working with libraries

4.1 General information

A library is a collection of functions, function blocks, constants and data types. Any existing library can
be inserted into the logical view at any time. Either B&R standard libraries or libraries created by the
user can be selected.

HELP:

Project Management \ Logical view \ Wizards in the logical view \ Inserting libraries

Function

A function consists of the actual function call, the parameters being transferred and a value that is re-
turned. When a function is called, the parameters are passed and a return value is returned immediately.
Different parameters can be transferred the next time the function is invoked.

EXAMPLE:

Program code result := MIN(100,200);

Table: Calling a function with two parameters

Function block

In contrast to a function, a function block can return more than one value. It is also necessary to declare
an "instance". In addition, it is possible to have a function block perform a task by calling it several times.

Instance, inputs and outputs of a function block

1 Instance structure, must be declared in the variable declaration editor with a unique name.

2 Input parameters are passed directly before or during the function block call.

3 Output parameters are written while the function block is being called and can then be
used in the program code.

Table: Image description

Working with libraries

30 TM250 - Memory Management and Data Storage

Different instances make it possible to make calculations in tasks using different parameters.

An instance can actually be thought of as a structure. The function block takes in the input parameters
at the moment it is called and then passes the output parameters on to the instance.

EXAMPLE:

Declaration VAR

 TON_time1 : TON;

 TON_time2 : TON;

END_VAR

Program code TON_time1(IN := enable1, PT := T#5s);
TON_time2(IN := enable2, PT := T#10s);

Table: Calling two TON function blocks with different times

The two timers can be started at different points in time and run for different periods of time as
well. The time that has already passed and the delayed output signal are stored in the instance
when the function block is called.

ADVICE:

A function block only takes on input parameters when called the next time. The outputs of the
function block are only handled when the function block is called.

ADVICE:

When a function or function block is inserted, the "F1" key can be used to open up the Automa-
tion Studio help documentation. It contains information about the parameters as well as the
inputs and outputs for that particular function or function block.

Generating a clock signal

Call the "TON" function block. Generate a clock signal with a length of one second and a one second
pause.

HELP:

Programming \ Functions and function blocks \ Functions

Programming \ Functions and function blocks \ Function blocks

Calling function blocks: The enable input and status output

Function blocks included in B&R standard libraries all have an enable input and a status output.

The enable input makes it possible to enable or disable the function block.

The status output indicates the current status of the function block. There are some statuses that are
the same for all of the function blocks. Other statuses can vary, but their number range can always be
used to determine clearly the library to which they belong. Information about status values can be found
in the Automation Studio online help documentation.

Working with libraries

TM250 - Memory Management and Data Storage 31

Constant Error number Meaning
ERR_OK 0 Execution successful, no errors, output values are

valid

ERR_FUB_ENABLE_FALSE 65534 Enable not set, function block called but not executed

ERR_FUB_BUSY 65535 BUSY, function block called but action not yet fin-
ished, call again in the next cycle

Table: Universal status values of function blocks

ADVICE:

Universal status values are not errors and must be handled accordingly when the return values
are evaluated in the program code.

These three status values are predefined in the "runtime" library. This library is always included
in an Automation Studio project.

EXAMPLE:

This example shows how to call a function block that has a status output. Correctly evaluating
the status output is essential here. The function block being called is "CfgGetIPAddr" from the
"AsARCfg" library.

Declaration VAR

 GetIP : CfgGetIPAddr;

 sIPResult : STRING[20];

END_VAR

Program code GetIP.enable := 1;
GetIP.pDevice := ADR('IF3');
GetIP.pIPAddr := ADR(sIPResult);
GetIP.Len := SIZEOF(sIPResult);
GetIP();
IF GetIP.status <> ERR_FUB_BUSY THEN

 IF GetIP.status = 0 THEN

 (*everything ok*)

 ELSE

 (*place error handler here ... *)

 END_IF

END_IF

Table: Evaluating the status after a function block call.

ADVICE:

It's important to keep calling the function block as long as the status remains equal to BUSY.
As soon as the status is equal to 0, the procedure has been carried out correctly and the output
parameters can be used in the program. Any status other than 0 or BUSY must be handled in
the program code accordingly. An overview of error numbers can be found in the documentation
for the respective library.

Calling a function block and evaluating the status

1) Call the "CfgGetIPAddr" function block.

Working with libraries

32 TM250 - Memory Management and Data Storage

Call the "CfgGetIPAddr" function block from the "AsARCfg" library. Use it to determine the IP address
of the Ethernet interface on your controller.

2) Evaluate the status values.

Evaluate the status outputs correctly. Set a variable to 1 if the status = ERR_FUB_BUSY. Set it to 2
if the status = 0. If a different error (status) occurs, set the variable to 100.

3) Look up the status values in the help documentation.

Look for the error codes for this function block in the Automation Studio online help documentation.

4) How can this error be handled?

Think about how the program might be able to handle this error. Is there any way to implement
countermeasures against it in the program code?

HELP:

Programming \ Libraries \ Configuration, system information, runtime control \ AsARCfg

HELP:

Diagnostics and service \ Error numbers \ Libraries

Components of a library

A library consists of several components and properties.

These components include the following:
• .fun file: Contains the interface or structure of a function or

function block instance
• .var file: Contains numeric constants, which includes the

statuses that a function block can return as well as the pa-
rameters expected by the function or function block

• .typ file: Structures that are needed internally by the func-
tion block or that must be passed to the function block in
the application

Components of a library

HELP:

Programming \ Libraries

Project management \ Logical view \ Libraries

Working with libraries

TM250 - Memory Management and Data Storage 33

4.2 Creating user libraries

New user library

 In order to be able to reuse program code, it must first be split up
into self-contained modules that can be maintained. User libraries
created in Automation Studio are an ideal way to do this.

Before the design phase begins, it is important to give some
thought to the scope of the individual functional units, i.e. the
functions and function blocks. Once this has been done, the in-
terfaces can be declared. Finally, the range of functions can be
implemented.

The following things need to be considered:
• What is the function of this library?
• Which functions and function blocks are necessary?
• How should the interfaces for the functional units look?
• Will constants and structures be used?
• Are certain things necessary from other libraries to handle certain tasks?
• How will the library be passed on or stored?

Inserting a user library

The wizard in the logical view can be used to insert a new library. Libraries can be stored in the "Libraries"
package or any other package in the logical view.

The following settings are possible:
• Name and description of the library
• Programming language
• Content such as constant declarations (.var)
• Data type declaration file (.typ)
• Function and function block declaration file (.fun)

HELP:

Project Management \ Logical view \ Wizards in the logical view

Inserting a function block

After it has been created, the library can be selected in the logical view. The wizard can be used to add
a function or function block to a library.

The following settings are possible:
• Name and description of the function or function block
• Selection of whether this is a function or function block
• Programming language of the function or function block
• For functions: Data type of the return value
• Declaration of input and output parameters

After a function or function block has been added, the contents of the .fun file are changed accordingly.
Changes can be made to the .fun file at any time.

Working with libraries

34 TM250 - Memory Management and Data Storage

In addition, a source file with the name of the function or function block is inserted into the library; this
is where the actual functionality is implemented.

It is now possible to begin this implementation in the source file. Parameters can be handled just like
normal variables.

Parts of the new library

ADVICE:

If a function block outputs a status value, we recommend that constants be defined for it. These
constants can be declared in the library's .var file. There is a defined user area provided for
user constants.

HELP:

Diagnostics and service \ Error numbers \ AR system \ 50000 - 59999 user area

Implementation and testing

To ensure that the new library functions properly, it must be thoroughly tested. To do so, new functions
and function blocks can be called and tested in any program.

Using function blocks

If function blocks from other libraries should be used in the user library, an instance must first be declared.
The instance for external function blocks should be declared as an internal variable in the user function
block instance.

Exporting and transferring

Once the library is finished, it can be assigned a version number, e.g. in the library's properties. It is then
possible to export the user library. This can be done using the File menu in the logical view. The user
can also choose whether the source files should be included.

If the source files are not included, it's important to note that the library can no longer be edited at a
later time.

ADVICE:

Libraries can be managed in packages in the logical view, just like programs. The libraries are
stored in the same package as the program that is using it.

Creating the library "myMath"

Create the user library "myMath". A function block called "adderx" is needed that will add up the weights on
a scale and determine their average value. In addition, the maximum weight should also be determined.
An enable input and status output must be included in the function block.

Name Properties / Value Data type
Parameter (.fun)

Table: Interface and constants for "adderx"

Working with libraries

TM250 - Memory Management and Data Storage 35

Name Properties / Value Data type
enable VAR_INPUT BOOL

weight1 VAR_INPUT INT

weight2 VAR_INPUT INT

weight3 VAR_INPUT INT

status VAR_OUTPUT UINT

sum VAR_OUTPUT DINT

average VAR_OUTPUT INT

Maximum VAR_OUTPUT INT

Table: Interface and constants for "adderx"

HELP:

Project Management \ Logical view \ Wizards in the logical view \ Inserting libraries

Project Management \ Logical view \ Inserting functions and function blocks into libraries

Programming \ Editors \ Table editors \ Declaration editors \ Function and function block dec-
larations

Project management \ Logical view \ Exporting a user library

Project management \ Logical view \ Help for user libraries

4.3 B&R standard libraries samples

The use of B&R standard libraries provides comprehensive support when implementing tasks. To make
it easier to work with these libraries, B&R has created several library samples. With the help of standard
solutions, functions in these libraries can be used even more efficiently.

These ready-made units can be imported using the wizard in the logical view.

The samples can then be modified and tailored to the specific application (e.g. adjusting interface para-
meters) before being transferred to the target system at hand.

Wizard - Adding a sample

The samples were also designed so that they can be tested without any controller hardware actually
being present. This is done with ARSim.

Working with libraries

36 TM250 - Memory Management and Data Storage

The structure of the individual programs is the same. This makes it easy to orient yourself to the different
areas. A description and overview of the samples can be found in the Automation Studio online help
documentation.

HELP:

Programming \ Examples \ Adding samples

Programming \ Examples \ Libraries

Inserting a sample

Insert the following sample into your project:

HELP:

Programming \ Examples \ Libraries \ Configuration, system information, runtime control \ Create
and evaluate user logbook

The basics of data processing

TM250 - Memory Management and Data Storage 37

5 THE BASICS OF DATA PROCESSING

Up until now, all variables, arrays and structures have been used locally. It is frequently necessary,
however, to store data in a file at a certain location in memory or to transfer it over a network. When
doing so, a few things need to be taken into account.

It's important to know how data is stored in memory as well as the format in which it is stored and trans-
ferred. In addition, the contents of the data must remain consistent whenever it is stored or transferred.

5.1 Alignment

Different process architectures follow different rules when it comes to operations involving data and data
management. The user usually doesn't have to take this into consideration, except for in extremely rare
cases. If data is to be transferred between systems that have different architectures, however, it is a
good idea to think about how that data is to be stored.

Creating a user-defined data type

1) Modify the user-defined data types.

Modify the data types of the elements of "recipe_typ". These elements are listed in the table.

2) Determine the size of the data.

Declare a variable "SimpleCoffee" that uses the user data type "recipe_typ". Use the sizeof() function
to determine the data length of the structure.

3) Analyze the results.

It is possible that the data length you've determined does not correspond to what you expected.
Element name Data type
price USINT

milk UINT

sugar USINT

coffee UDINT

Table: Elements of the data type "recipe_typ"

In the previous task, the data length determined did not correspond to expectations. The additional data is
in the form of stuff bytes. These are added automatically due to the alignment of this particular processor
architecture. This is necessary primarily because the processor is able to address the stored data more
easily and more quickly. In addition, it is not possible for the processor to read data types with an even
data length from memory addresses with an odd length.

Modifying the user data type

1) Rearrange the elements.

Re-sort the elements of the "recipe_typ". In this way, it's possible to use a portion of the stuff bytes
for the data in the structure.

The basics of data processing

38 TM250 - Memory Management and Data Storage

HELP:

Real-time operating system \ Target systems \ SG4 \ Runtime behavior \ Alignment

5.2 Data formats

Data can be stored and transferred in many different formats. When looking at a structure, for example,
its individual bytes are interpreted and represented according to the data types being used.

If the data contents of the structure are copied to a byte field, then only the binary data is left over. In this
case, the data can only be interpreted if the storage format, i.e. the user data type in this case, is known.

If data is then stored in files or transferred over a network, it is nec-
essary to know the data format being used on both sides, i.e. where
the data is stored or being sent from as well as where the data is
ultimately to be interpreted.

There are many different data formats available. Without an appro-
priate data format, the data still exists in binary form.

Is the data format known?

Formatted data Binary data
binary 2B 34 33 37 37 34 38 36 35 38

 36
2B 34 33 37 37 34 38 36 35 38
 36

Data type
REAL

12.34 41 43 D7 0A

ASCII 'Hello World!' 48 65 6C 6C 6F 20 57 6F 72 6C
 64 21 00

XML <?xml version="1.0">
<ComboBox>
<Item ID="off"/>
</ComboBox>

3C 3F 78 6D 6C 20 76 65 72 73
 69 6F 6E 3D 22 31 2E 30 22 3E
 0D 0A 3C 43 6F 6D 62 6F 42 6F
 78 3E 0D 0A 3C 49 74 65 6D 20
 49 44 3D 22 6F 66 66 22 2F 3E
 0D 0A 3C 2F 43 6F 6D 62 6F 42
 6F 78 3E 0D 0A

Table: Comparison of formatted data and binary representation

ADVICE:

As can be seen in the table, all data is always stored in binary form. It can only be depicted
differently if the data format is known. A file extension says nothing about the contents of a file;
it simply provides a clue about how the data should be interpreted.

The basics of data processing

TM250 - Memory Management and Data Storage 39

5.3 Data consistency

If the contents of memory are copied from A to B through assignment or with "brsmemcpy()", then this
is done rather quickly in a single pass. If the same data should be saved to a file or transferred over a
network, then it is necessary for the data to remain consistent.

Saving or transferring data can easily take several program cycles, and it's not possible to predict how
much of it can be processed per cycle. For this reason, it is important that the contents not change at
all throughout this process.

Before the save or copy procedure begins, it is therefore a very good idea to implement a "preparation
step" in the program that gets the data ready. This preparation step is only executed once before the
save or transfer procedure is carried out. Data consistency can be ensured in this way.

ADVICE:

If data does not remain consistent when being saved or transferred, it could possibly be stored
or transferred with data with which it doesn't belong.

For example, a series of measurement values may no longer fit together chronologically. De-
pending on the process, the effects of this can be minimal or extremely critical.

EXAMPLE:

Declaration VAR

 stepSave : UINT;

 aSend : USINT[0..9];

 aRaw: USINT[0..9];

 cmdSave : BOOL := FALSE;

END_VAR

Program CASE sSave OF

 0: (*--- wait for instruction*)

 IF cmdSave = TRUE THEN

 sSave := 1; (*--> Prepare & Save*)

 END_IF

 1: (*--- prepare data*)

 brsmemcpy(ADR(aSend),ADR(aRaw),SIZEOF(aRaw));

 2: (*--- save data into file*)

 SaveData(ADR(aSendData));

END_CASE

Table: Preparing data before saving it to a file

The functions called here are symbolic and only used to explain the sequence; they do not
actually exist.

Immediately before the save function is called, the modified data is copied from the application
to a byte field. It remains consistent throughout the entire save procedure.

HELP:

Programming \ Libraries \ Communication \ AsTCP \ General information

Programming \ Libraries \ Communication \ AsSnmp \ General information

Programming \ Libraries \ Data access and data storage \ FileIO

Storing and managing data

40 TM250 - Memory Management and Data Storage

6 STORING AND MANAGING DATA

Data can be stored on the controller in many different ways. It can be managed as a memory block
in DRAM, diverted as a B&R data object with checksum monitoring or stored locally in a file on a file
system or network.

6.1 Reserving memory blocks

In some rare cases, it may be necessary to reserve a memory area in DRAM at runtime. This memory
is then available to the user's program. It can be accessed via the reserved memory's starting address.
Unless it has been freed up again by the user, this area is not available to the system.

The memory being reserved must comprise consecutive available memory locations on the system in
order for it to be used by the user program.

ADVICE:

The contents of this memory must be initialized by the user. Since the contents of memory
reserved are in DRAM, it will be lost each time the controller is restarted.

Memory management with SYS_Lib

If the amount of memory to be reserved is known before the controller is booted, then the "tmp_alloc"
and "tmp_free" functions in the SYS_Lib library can be used.

These functions may only be called in the INIT and EXIT subroutines of the controller program.

HELP:

Programming \ Libraries \ Configuration, system information, runtime control \ SYS_Lib \ Func-
tions and function blocks \ Memory management

Memory management with AsMem

The AsMem library can be used in the INIT subroutine of a program to reserve a large partition of memory
on the system. Memory blocks can then be diverted and then freed up using function blocks called in
the cyclic program itself.

HELP:

Programming \ Libraries \ Configuration, system information, runtime control \ SYS_Lib \ Func-
tions and function blocks \ Memory management

Programming \ Libraries \ Configuration, system information, runtime control \ AsMem \ Func-
tions and function blocks

Programming \ Examples \ Libraries \ Configuration, system information, runtime control \ Man-
aging memory areas

Storing and managing data

TM250 - Memory Management and Data Storage 41

6.2 Data objects

B&R data objects

 To configure different parts of the software, it is sometimes neces-
sary to have parameter data available in a parameter file. These
files can be read by the application and, if necessary, re-saved.

B&R data objects can be used in these cases. It is possible to
save the files as well as write data to them directly in Automa-
tion Studio. At runtime, the checksums of these data objects are
monitored.

This checksum monitoring makes it possible to detect corrupted
data. This information is saved in the logger.

HELP:

Programming \ Data objects

Programming \ Data objects \ Simple data objects in B&R data object syntax

Programming \ Libraries \ Data access and data storage \ DataObj

Programming \ Examples \ Libraries \ Data access and data storage \ Data storage

Real-time operating system \ Method of operation \ Module / data security

Using the DataObj library

1) Create a data object.

Create the data object "param" in Automation Studio's logical view.

2) Enter the data in the format of the structure "recipe_typ".

Using the Automation Studio online help documentation for support, enter the data into the data
object in the format of the structure "recipe_typ".

3) Read out the contents.

Use the function blocks "DatObjInfo()" and "DatObjRead()" to read the data from the data object.

4) Analyze the data.

Determine if the data read back out matches the data that you entered into the data object. Don't
forget about the alignment!

Storing and managing data

42 TM250 - Memory Management and Data Storage

6.3 Storing files in the file system

It's not always the case that data remains on the same system. Files are one way to store and transport
data at the same time. The FileIO library makes it possible to access the internal file system, USB flash
drives or network resources.

This results in the following:
• Access to the controller's file system
• Management of directories
• Searching of directories
• Creating, reading from and writing to files
• Access to USB mass memory devices
• Access to resources freed up on the network
• Access to the FTP server on the network

Possibilities with the FileIO library

ADVICE:

To access the file system, it is necessary for the storage location to have a symbolic location.
This is also referred to as a file device. A file device is a name (e.g. "RECIPES" that points to
a specific location (e.g. "F:\Recipes\").

File devices can be created in the Automation Studio system configuration or with the "De-
vLink()" function block.

HELP:

Programming \ Libraries \ Data access and data storage \ FileIO

Programming \ Libraries \ Data access and data storage \ FileIO \ General information \ File
devices, files and directories

Programming \ Examples \ Libraries \ Data access and data storage \ Data storage

Using the FileIO library

1) Create a text file.

Create a text file with Notepad and type anything into it.

2) Copy the text file to the CompactFlash card.

Copy the file to the CompactFlash card. The CompactFlash card can be accessed by FTP as well
as by a card reading device. In ArSim, the "C" drive is the hard drive on your computer.

3) Read out the contents of the file.

Set up a state machine. Define an enumerated data type that maps out the step numbers of the state
machine. Write a program that opens the file, reads out its contents and closes it again.

Storing and managing data

TM250 - Memory Management and Data Storage 43

ADVICE:

When storing data on the CompactFlash card, it's important that it is stored on the user partition.
On normal file systems, this is the "D:\" drive; on secure file systems, this is "F:\". Using different
partitions allows the operating system, application and user data to be clearly delineated.

The CompactFlash card can be partitioned when it is created with the Automation Studio /
Runtime Utility Center.

HELP:

Diagnostics and service \ Service tool \ Runtime Utility Center \ Creating a list / data medium
\ Creating a CompactFlash card

6.4 Databases

Data objects and files can be used to easily store and archive data. For these to be directly integrated
into existing IT infrastructure, accessing databases is often necessary. The "AsDb" library can be used
to set up connections to SQL databases.

HELP:

Programming \ Libraries \ Data access and data storage \ AsDb

Data transfer and communication

44 TM250 - Memory Management and Data Storage

7 DATA TRANSFER AND COMMUNICATION

The topic of data transfer and communication is quite complex and comprises several different areas.
Before approaching the implementation of a task, it's a good idea to familiarize yourself with the different
aspects involved.

Questions to keep in mind with regard to data transfer and communication:
• Which data should be transferred?
• With what station am I communicating?
• Is it a PC or a controller?
• Which medium is being used?
• Which protocol is being used?
• Which data format is being used?
• Are there different platforms involved?
• Is there a standard library that works for the required protocol?
• Is there a fieldbus involved?
• How much data is to be transferred?
• What are we looking at with regard to transfer speed and response time?

This list of questions provides clues to the issues that need to be
cleared up before implementation can begin.

The Automation Studio help documentation provides an overview of
the different types of communication available.

It contains information about the means of transfer and protocols as
well as the configurations and libraries that can be used with them.

HELP:

Communication

Programming \ Libraries \ Communication

Automation Studio help documentation -
Communication

7.1 General information about communication

If you take a closer look at the connections and how individual
components are networked, you will realize that there are different
topologies and access methods. The topology indicates the type of
connections used for communication.

Access methods refer to how different stations on the network coor-
dinate with one another. Each station on the network has a unique
identifier (station or node number, IP or MAC address). The medium
often determines the topology to be used, but not necessarily the
access method.

Frequently used topologies:
• Point-to-point
• Line
• Tree
• Star
• Bus
• Ring

OSI layer model

Data transfer and communication

TM250 - Memory Management and Data Storage 45

Frequently used access methods:
• Master - Slave
• Token Ring
• CSMA/CA
• CSMA/CD
• Time slot method
• Client - Server

Common media:
• Serial RS232 / RS485 / RS422
• CAN
• Ethernet

Point-to-point

In a point-to-point connection, there is usually a master and a slave. The master issues commands to
the slave, which responds to them or carries them out.

Network

A network generally contains several stations. Depending on the access method, the stations on the
network are coordinated differently. For example, there are access methods where collisions that occur
are detected and resolved (e.g. CSMA / CD).

There are also access methods that define which stations on the network are allowed to send data,
thus preventing collisions in the first place (e.g. CSMA / CA). POWERLINK uses a time slot method, for
example, which also prevents collisions from occurring. Because of this and the amount of data that can
be transferred, this type of transfer medium is real time capable.

Fieldbus systems

Fieldbus systems come into play when there is a device connected to a controller over a fieldbus. In
Automation Studio, a fieldbus device can be inserted and configured directly on the fieldbus master.
The description of the device is usually provided in a generic format (.eds, .gsd, .xdd file) that can be
imported directly into Automation Studio.

HELP:

Communication \ Fieldbus systems

7.2 Protocols

The communication protocol defines how data should be transferred from A to B. The receiver must
know how the protocol is structured in order to be able to handle the data and determine what should
be done with it. Data must be transferred in the correct format as well, i.e. both sides – the sender and
the receiver – must know the data format that is being used.

Elements of a protocol include the following:
• Identifier of the sender
• Destination address of the receiver
• The amount of data
• Data
• Checksums

Data transfer and communication

46 TM250 - Memory Management and Data Storage

ADVICE:

The protocol being used is not necessarily tied to a specific transmission technology. For ex-
ample, CANopen doesn't always have to have something to do with CAN.

CANopen mechanisms are fully integrated into POWERLINK, for example.

HELP:

Communication

7.3 Communication libraries

Automation Studio includes standard libraries that handle communication. All of the function blocks have
an enable input and a status output. The values of the status outputs are included as constants and
described in the help documentation for the respective library.

With the communication function blocks, an interface usually needs to be opened or initialized. In addi-
tion, a connection to the other station(s) needs to be established. If communication is no longer neces-
sary, then the connection is broken and/or the interface closed.

HELP:

Programming \ Libraries \ Communication

Programming \ Examples \ Libraries \ Communication

Diagnostics and service \ Error numbers \ AR system

Application possibilities

Using communication libraries allows many different application scenarios to be implemented. The AsTcp
library, for example, makes it possible to set up and monitor a Transmission Control Protocol (TCP)
connection. 3rd-party devices such as controllers and IP cameras can also be connected to a B&R
controller.

Communication over TCP/IP

1) Define the data.

Use data from your controller project. Make sure that the struc-
ture and the data format are the same as the data from the sta-
tion you are communicating with.

2) Import a sample project.

Import the sample project "LibAsTCP1_ST".

3) Establish the connection to your communication partner.

4) Test the communication.

5) Test scenarios in which communication fails.

Break the connection to each controller in turn and test whether it
can be reestablished by the communication program on its own.

TCP communication

Summary

TM250 - Memory Management and Data Storage 47

8 SUMMARY

Anyone who is responsible for designing a system is constantly confronted with data. How this data
is organized on the system itself is extremely important. Basic data types, arrays and structures are
available in this regard. They form the foundation for how data can be stored and transported.

Memory and variables Data processing and storage Communication and data exchange

Data can also be stored in files, memory areas or data objects. In these cases, the data format used to
store the data needs to be defined. The data format, along with the protocol, also needs to be defined
when transferring data. Both stations – the sender and the receiver – need to know what these are.

Data that is stored or transported from the cyclic program has to remain consistent at all times.

TM250 - Memory Management and Data Storage 48

Training Modules

49 TM250 - Memory Management and Data Storage

TRAINING MODULES

TM210 – The Basics of Automation Studio
TM211 – Automation Studio Online Communication
TM213 – Automation Runtime
TM220 – The Service Technician on the Job
TM230 – Structured Software Generation
TM240 – Ladder Diagram
TM241 – Function Block Diagram (FBD)
TM246 – Structured Text
TM250 – Memory Management and Data Storage
TM261 – Closed Loop Control with LOOPCONR
TM440 – ASiM Basic Functions
TM450 – ACOPOS Control Concept and Adjustment
TM460 – Starting up Motors
TM500 – Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
TM540 – ASiST SafeMC
TM600 – The Basics of Visualization
TM630 – Visualization Programming Guide
TM700 – Automation Net PVI
TM710 – PVI Communication
TM711 – PVI DLL Programming
TM712 – PVIServices
TM810 – APROL Setup, Configuration and Recovery
TM811 – APROL Runtime System
TM812 – APROL Operator Management
TM813 – APROL XML Queries and Audit Trail
TM830 – APROL Project Engineering
TM890 – The Basics of LINUX

TM
25

0T
R

E
.0

0-
E

N
G

 /
V

1.
3.

0.
4

©
20

11
 b

y
B

&
R

, A
ll

rig
ht

s
re

se
rv

ed
.

A
ll

re
gi

st
er

ed
 tr

ad
em

ar
ks

 a
re

 th
e

pr
op

er
ty

 o
f t

he
ir

re
sp

ec
tiv

e
co

m
pa

ni
es

.
Te

ch
ni

ca
l c

ha
ng

es
 re

se
rv

ed
.

www.br-automation.com

	TM250 – Memory Management and Data Storage
	Requirements [v1.0]
	Table of contents
	1 Introduction
	1.1 Objectives

	2 Variables, constants and data types
	2.1 The basics
	2.1.1 The binary and hexadecimal systems
	2.1.2 Comparing variables and constants
	2.1.3 Declaring variables, constants and data types

	2.2 Basic data types
	2.2.1 Data type conversion

	2.3 Arrays, structures and enumeration
	2.3.1 Arrays
	2.3.2 Direct deravation and subranges
	2.3.3 Structures
	2.3.4 Enumerated data types

	2.4 Strings
	2.4.1 String functions

	2.5 Addresses and memory size

	3 Memory and memory management
	3.1 Memory initialization
	3.2 Copying and initializing memory

	4 Working with libraries
	4.1 General information
	4.2 Creating user libraries
	4.3 B&R standard libraries samples

	5 The basics of data processing
	5.1 Alignment
	5.2 Data formats
	5.3 Data consistency

	6 Storing and managing data
	6.1 Reserving memory blocks
	6.2 Data objects
	6.3 Storing files in the file system
	6.4 Databases

	7 Data transfer and communication
	7.1 General information about communication
	7.2 Protocols
	7.3 Communication libraries

	8 Summary
	Training Modules
	U4 [v1.5]

