Sequential Function Chart (SFC)
TM242

Requirements

Training modules: TM210 — The Basics of Automation Studio
TM246 — Structured Text (ST)

Software Automation Studio 3.0.90

Hardware -

TM242 - Sequential Function Chart (SFC)

Table of contents

TABLE OF CONTENTS
R L I O 1516 1@ N [] 4
1.1 Training Module ODJECHIVES. e 4
2 SEQUENTIAL FUNCTION CHART ...eei ettt e e e e s e s e e e s e s e e e e s eerannanas 5
2.1 General INfOrMEAION.cooueie et e e e et e e e e e e e e e e e e e eaaaanas 5
2.2 The basic fUNCHON Of SFC... ..o 6
2.3 Editor fUNCLONS IN SFC.. ..ot e e e e e e e e e e et e e e e e eeeaean 7
BT I =t s TR 9
3.1 INIAlIZAtION STEPS....eei i 9
3.2 ENtry @nd eXit @CONS.eiiiiiiiiii e e e e e e e e 10
3.3 Monitoring the timing Of StEPS......ciiiiiiii e 10
I o7 (o] g = (=T o 1 USSR 11
R TR T @7 a1 o Yo 18 [o K] 1= o J S 14
I N N IS I 10\ TN 15
4.1 Transitions With program COOE............coiiiiiiiiiiiii e 15
5 ALTERNATIVE AND PARALLEL BRANCHES ... oo, 18
LT AN L C=Y 4 g =N AV Y o = T 1] 1Y 18
VA = 1 2= || (ST I o] £=1 2 (o1 (ST 19
B JUM P S .. 20
A =, Y d T = TR 21
7.1 Application example: Fill CONIOL.... ..o 21
7.2 Application example: MiXer CONTrOL............uiiiiiiiie e a e e 22
8 USING SYSTEM VARIABLESottt e e e e et s e e e e e e aaa e e e s eeaaes 24
8.1 Usage in appliCatioNS..........eiiiiiiiiiie e 24
O DIAGNOSTIC FUNCTIONS ettt e et e e e e e e e et e e e e e eeaaaeeeeeeeernnnnns 27
9.1 MoNitor MOAE N SFC ...t e e e e e e e e e e e e eeeas 27
9.2 SFC VANADIES.o e 28
1S TR I I =1 o1 0 T o 1= S 29
TO SUMMARY .ot e e e et e e e e et et e e eee s e e et e eeaesee e b e eeae s e e e b e eeaeseeaban e eeaeeeraraneas 30
11 APPENDIX: EXERCISE SOLUTIONSt 31
11.1 Exercise SolUtion: Fill CONTIOL..........uuiiiiiiieeee e e e e 31
11.2 Exercise solution: MIXEr CONTIOL.........couuniiiii e e e e eaans 32

TM242 - Sequential Function Chart (SFC) [l

Introduction

1 INTRODUCTION

Sequential Function Chart is also referred to by its acronym, SFC.
SFC is a visual programming language arranged around a series NN
of steps. This not only improves clarity, but also makes it easy to -

troubleshoot programs. _

SFC makes it possible to formulate and implement successive and -y
parallel sequences that arise in the course of software design. s |
ke
]

This training module will cover the elements used in the Sequential
Function Chart programming language.

Examples are included to provide a deeper level of understanding.
The programming that takes place in steps and transitions is written Sequential Function Chart (SFC)
using Ladder Diagram and Structured Text.

Additional information regarding the individual sections covered here can be found in the Automation
Studio online help documentation.

Programming \ Programs \ Sequential Function Chart (SFC)

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor

1.1 Training module objectives

In this training module, you will learn...

* ... How the Sequential Function Chart language works
* ... How to use steps and transitions correctly

e ... How to use action steps

* ... Rules for programming

e ... Troubleshooting options

n TM242 - Sequential Function Chart (SFC)

21

Sequential Function Chart

SEQUENTIAL FUNCTION CHART

General information

Sequential Function Chart is a visual programming language that
makes it possible to coordinate the sequential execution of different
program sections and steps. This programming language is partic-
ularly useful whenever program steps and defined transitions to the
individual steps are needed. It is even possible to execute parallel
sequences within a single program.

Sequential Function Chart properties

Sequential Function Chart is included in the IEC! The steps can call actions that are programmed in
other programming languages such as Ladder Diagram and Structured Text.

Sequential Function Chart is extremely suitable for use with state machines. Because it supports par-
allel processing (5.2 "Parallel branches"), it is possible to implement complex designs in a way that is
clear and manageable. The visual structure of the program is also advantageous for documentation and
troubleshooting sequences.

When is SFC used?

Whenever sequences can be described directly, it is possible to use the SFC programming language to
implement them. State machines can be "redrafted" and implemented in SFC; the opposite is usually
not possible.

Useful information

GRAFCET (acronym from the French "GRAphe Fonctionnel de Commande Etapes/Transitions"), de-
fined in EN 60848, is a standardized language for representing sequences. It is primarily used in au-
tomation but can also be found in process engineering.

Specified in IEC 61131-3, Sequential Function Chart is mentioned specifically in the GRAFCET standard
as one possible way to implement a GRAFCET plan (de.wikipedia.org/wiki/lGRAFCET).

Creating large applications

When designing larger applications, it is necessary to consider everything in advance in order to be able
to really take advantage of the characteristics that SFC was designed to handle — controlling sequences.

Itis recommended that the actual sequence be implemented in the SFC program. Machine sub-functions
such as evaluating I/O data, scaling values or controlling actuators should be handled in an additional
program module.

' The IEC 61131-3 standard is the only valid international standard for programming languages used on pro-
grammable logic controllers. This standard also includes Ladder Diagram, Instruction List, Structured Text
and Function Block Diagram.

TM242 - Sequential Function Chart (SFC) [

Sequential Function Chart

The SFC program can then call these sub-functions via defined interfaces and retrieve the status of
each function.

This type of structure is advantageous since a machine sub-function may change (e.g. a new sensor or
different drive) but the sequence itself remains unchanged. This kind of division is a good way to allow
both the sequence chain and the machine's sub-functions to be tested and expanded as needed.

In the rest of this document, Sequential Function Chart will be referred to by its acronym, SFC.

2.2 The basic function of SFC

The basic components of SFC are called steps and transitions.
Steps are shown as rectangles with different types of borders. Tran- FI RST
sitions are indicated by horizontal lines that intersect the connections
between steps.

All steps and transitions are connected to each other in alternating
order. In other words, a transition always follows a step. A step and __TRUE
its transition form a unit. It is not possible, for example, for two steps
or two transitions to occur consecutively.

The example shown here illustrates a program with three steps, the H E AT
associated transitions and a jump.

The first time the SFC program is called, the "FIRST" step is
scanned. This step is identified by its double border and is always
called when the program is initialized. The associated transition has
the value TRUE, which means that the initialization step will only be __tOOH Ot
called for one cycle.

The program then lingers in the "HEAT" step until the "tooHot" tran-
sition also becomes TRUE. The "HEAT" step then becomes inac- COOL
tive, and the program moves on to the "COOL" step. As soon as the
"tooCool" transition becomes TRUE, then the jump is executed and
the "HEAT" step becomes active once more.

Only one step is executed per program cycle. __tOOCO|d

Step names are symbolic and don't need to be declared. The tran-
sitions, on the other hand, are variables of data type BOOL or log-

ical expressions that can be put together in various programming <I>H E AT
languages.

Sequence with two steps, one jump and
an initialization step

n TM242 - Sequential Function Chart (SFC)

23

Sequential Function Chart

A step and a transition form a single unit, with one transition following each step. Itis not possible
for two or more transitions or steps to appear consecutively.

When moving from one step to the next, the new step is executed only when the next program
cycle begins.

Programming \ Programs \ Sequential Function Chart (SFC)

Editor functions in SFC

When programming in SFC, it is necessary to insert steps, transitions and jumps.

There are several places from which the SFC editor in Automation Studio can be operated:

* Main menu: Insert

* Main menu: SFC

» Editor toolbar

e Shortcut menu for the SFC program, steps and transitions

1r|m't|0‘lnn Project SFC Source Contral Online Tooks Window Help

WDnﬁunmon BIo(? 1% Lo Hmlere) e Ly L1

gl Voridbile... : 8 = S Function € e ”x‘

Te Step Transition befare Strg~T Bl |2 .
Bt T Te b RBE L b Ge vese | iy

Ty Step Transition sfter Strg-£ =l

4] Alternative Branch right Strg=B INIT

A3 Alernative Branch left

& Paraliel Branch right Strg=L

= Parallel Branch left

Ll Jump Strg+)

| Transition Jump TRUE

Operating the SFC editor using the main menu, the toolbar and shortcut menus

Objects are inserted using the main menu and the toolbar. Object properties can be defined either from
the main menu or using the object's shortcut menu. A selected element can be opened by double clicking
on it.

It is also possible to zoom in and out of the SFC editor using the Zoom toolbar or the "View" menu in
the menu bar.

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor \ General editor
settings

Project management \ The workspace \ Toolbars \ Zoom

TM242 - Sequential Function Chart (SFC) [

Sequential Function Chart

Creating your first SFC program

In this exercise, you will create the simple program that was discussed in The basic function of SFC.

1) Insert a new SFC program in the logical view.
The program should be called "sfc_basic".

2) Insert the step "HEAT".

3) Insert the step "COOL".

4) Name and declare the transitions "tooHot" and "tooCold".
5) Compile the program.

6) Enable monitor mode.

7) Test the program in the variable watch window.

The program can be tested by manually setting the values of transitions in the variable watch window.
When one of the transitions is set, then the SFC program will move to the next active step. Enabling
"Powerflow" while monitor mode is active will color active steps and switched transitions.

If Powerflow is enabled, then active steps and transitions are shown in color. Transitions can be set
either in the variable watch window or by clicking on it in the SFC program.

FIRST

tooHot

The "HEAT" step and the transition after "FIRST" are active.

Diagnostics and service \ Diagnostic tool \ Monitors \ Sequential Function Chart editor in monitor
mode

H TM242 - Sequential Function Chart (SFC)

3.1

STEPS

A step can call executable program code or actions. This code is al- |
ways executed whenever the step is active. A step can be activated, H E AT
executed and deactivated. Timing can also be monitored for steps.

Steps are represented as rectangles. If a step includes cyclic pro-
gram code, then a black triangle is shown in its upper right corner. |

The contents of a step consist of programs that can be written in one ~ S'eP With executable code

of the IEC programming languages.

Steps that contain directly executable code are an expansion of the IEC standard. Cyclic actions
are usually composed of IEC actions (see Action steps).

Programming \ Programs \ Sequential Function Chart (SFC) \ Step

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor \ Defining SFC cyclic
actions

Initialization steps

The initialization step is executed immediately after the program is
started as the first step of the cyclic program. It is important that this F | RST
not be confused with the initialization subprogram. The initialization
step is also executed after a return or after an SFCReset or SFClinit
is carried out. When a compound step is active, then the initialization |
step of the underlying SFC program is activated. Initialization step

Initialization steps are indicated by a double border.

See also:

Compound step
e Using system variables

TM242 - Sequential Function Chart (SFC)

3.2 Entry and exit actions

Every step except for the initialization step can have an optional en- I
try and exit action. Entry actions are indicated by the letter "E", exit H E AT
actions by the letter "X". Initialization steps can only have an exit

action. E | X

Step with entry and exit action

An entry action (E) is called once when the step becomes active. An
exit action (X) is called once after the step becomes inactive.

These actions can be added or deleted from the step's shortcut
menu.

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor \ Defining SFC entry
actions

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor \ Defining SFC exit
actions

3.3 Monitoring the timing of steps

The timing of each step can be monitored (optional). This makes it possible to check whether a maxi-
mum or minimum time has been exceeded. System variables can be used to intercept violations of the
configured time (see Using system variables).

[rerese TR ===
e]

)

Name of the Step: HEAT

Soure fie: C\Projacts’,

Miieum Time: i

Manrriurs Tame: TE10

IEC Step: CIecen3rz

Step Comment :

([ox_] [[tbrmchen | | J [ne]

Properties dialog box for a step, minimum and maximum execution time

In addition to time monitoring, the Properties dialog box also has space to add a comment for
the step.

This comment and any time values gives are displayed in the step's tooltip.

TM242 - Sequential Function Chart (SFC)

3.4

Action steps

Action steps can also be referred to as IEC steps. Action steps themselves do not contain any program
code; they can only contain the actions associated with the action step. These actions are executed
when the step is active.

There are two different types of action blocks:

¢ Boolean actions
e Actions with program code

In addition, qualifiers can be defined to determine how the actions should be called. For example, it
is possible to specify that an action should be delayed by a certain amount of time when the step is
activated.

|
COOL —D T#10s ac_Cooler
N ac_Limit

Step with delayed action and a cyclic action

The content of an IEC action with program code is programmed in a separate program module, e.g. in
Structured Text. IEC actions can be used multiple times, therefore making it possible to associate them
with several steps with different qualifiers.

With Boolean actions, a variable of data type BOOL is connected in addition to the qualifier. The value
of the variable is set to TRUE whenever the action is executed.

For a complete list of possible qualifiers, please refer to the help documentation.

Overview of important qualifiers:

* Calls an action cyclically (N)

* Limits an action temporally (L)
* Delays an action (D)

* Sets an action conditionally (S)
* Resets an action (R)

Activating IEC steps

A setting in the toolbar makes it possible to configure whether a step with cyclic program code or an IEC
step with IEC actions should be inserted. Steps that have already been placed can be reconfigured in
the step's Properties dialog box.

[= s | (" Properties |
e Use [EC Steps Step Atrites |
Use IEC Steps
8
Default setting "Use IEC steps"
Name of the Step: Step2
Souce fle: C:\Progects\|EC_Programmesmprache
Miirum Time:
Mgeimum Time:
I IEC Step: [IEC &3 |

Step property "IEC 61131-3"
Up to ten different actions with any variety of qualifiers can be associated with a single action step.

TM242 - Sequential Function Chart (SFC) i

In SFC, action blocks are executed according to the logic of the "final scan".
For this reason, actions with the qualifier "P" are always called twice.

The scan in which the action is currently being processed can be seen with the action's instance
structure (3.4.2 "Evaluating an action's 'final scan™).

In addition, deactivated actions are called at the end of the program in alphabetical order; newly
active actions are then called, also in alphabetical order. This should be taken into consideration
when constructing the sequential program.

Programming \ Programs \ Sequential Function Chart (SFC) \ Action step
Programming \ Actions
Programming \ Actions \ Action block - Qualifiers

Programming \ Actions \ Using actions in the various programming languages

3.4.1 Creating and associating actions

Creating an action with program code

An action containing program code must first be created before it can be associated with a step. A new
action is added using the wizard in the logical view.

(@ add Object

: |
1

§ALH

Function / Function Block

LeLEDLBLRDEL

i

|A|H & new Betion o yeur [EC peogram of libeary

[Met> J[Concd [e |

Inserting a new action in the Logical View

Project Management \ Logical view \ Wizards in the logical view

Creating a Boolean action

The only thing needed for a Boolean action is a local or global variable of data type BOOL. This must
be declared in the variable declaration window before the action can be associated with a step.

TM242 - Sequential Function Chart (SFC)

Associating an action with a step prelsm

o= Aktion Tuwelsen

Actions can be associated with a step using the "Associate action" Aktion dem aktuellen SchrittZuwsisen
toolbar icon. The step must be selected first. "Associate action” icon

Qualifiers (N, D, P, etc.) as well as the actual action can then be assigned in the action associated with
the step. A list of possible actions (with code or Boolean) can be opened up with the key combination
<CTRL> + <space bar>.

Displaying all actions and Boolean variables with <CTRL> + <space bar>

It is possible to use an action with different qualifiers for different steps. However, this is not
always a good idea.

For example, if an action is set with the "S" qualifier, then one can assume the qualifier "R",
which affects the same action.

But if this action is also called with the qualifier "N", then the action will already be reset when
the step becomes inactive. The "R" qualifier therefore no longer has any effect on the action
since it has already been reset.

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor \ Using action blocks

Programming \ Editors \ General operations \ SmartEdit

3.4.2 Evaluating an action's 'final scan'

Depending on the program constellation, it may be necessary to only call an action once. In these cases,
the final scan can be queried in actions with program code using the action's instance structure.

TM242 - Sequential Function Chart (SFC) K}

a An action with the name "ac_Once" and qualifier "P" should only be called once. Because of
this, the final scan is queried in the action. The programming language used here is Structured
Text (ST).

Program code ACTI ON ac_Once:
I F ac_Once.x AND NOT ac_Once._x THEN
(*l ast scan*)
ELSE
Onl yOnce := TRUE;
END_I F ;
END_ACTI ON

3.5 Compound step

A compound step is an SFC step that can contain another SFC pro-
gram as cyclic program code. These steps are indicated by a black F| ” Heat
triangle in their upper right corner and a gray shadow. —

This makes it possible, for example, to integrate smaller sequences

into a larger, more complex sequence. The underlying SFC program |
includes an initialization step as well as all of the other possibilites Compound step
available in the main program.

Programming \ Programs \ Sequential Function Chart (SFC) \ Compound step

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor \ Using several SFC
layers

TM242 - Sequential Function Chart (SFC)

Transitions

4 TRANSITIONS

Each step has a transition that can be used to render it inactive. If a
transition is active, then the associated step becomes inactive and
the following step is activated in the next cycle. ——TR UE

A transition can have one of two values: "TRUE" or "FALSE". If the
value is "TRUE", then the transition is active.

The value of a transition can be received from a constant, a variable
or a bit of program code that returns a Boolean value.

~—tooHot

Transitions that are based on underlying program code are indicated
by a black triangle. The text of a transition is shown in green and
also serves as a comment.

Two transitions may never be placed directly next to one another.

—+tooCold

Transition with constant, program code
and variable

Moving to a different step by switching a transition doesn't take place in the same program
cycle. The newly active step always becomes active in the next cycle.

If several transitions are active in a chain of steps, then the SFC program looks for a stable
state. The step with a subsequent inactive transition is executed cyclically. The entry and exit
actions are called for the steps being scanned.

Programming \ Programs \ Sequential Function Chart (SFC) \ Transition / Transition condition

4.1 Transitions with program code

Transitions can also contain program code. The only condition is that the program code returns a result
when called once. This return value must be of data type BOOL; it represents the switching state of
the transition.

It is possible to combine logical operators (AND, OR, XOR, etc.). It's also possible to call functions.

The following programming languages can be used for transitions with program code:

¢ Instruction List

* Ladder Diagram

e Structured Text

e Function chart

e Continuous Function Chart
* B&R Automation Basic

TM242 - Sequential Function Chart (SFC) E

Transitions

Program code for a transition can be inserted either by simply clicking on the transition or from its shortcut
menu. A dialog box opens up to select the programming language.

& WARNING!

Only functions may be used in transitions. Whatever expression is used in the transition must
return a clearly defined result in the first call. The compiler returns an error message if attempt-
ing to call a function block:

Error 1453: A transition is not allowed to cause side effects (assign-
ments, function block calls, etc.).

4.1.1 Transitions in Ladder Diagram

A transition can be programmed as a network in Ladder Diagram. The transition is given at the end of
the network. When a transition is created in Ladder Diagram, a network is created automatically with the
transition placed in the output position.

The "Transition" identifier is to be used and is pre-declared by the system.

A transition in Ladder Diagram will look something like this:

0001

selector Transition
— _()_

100 wvalue_b
INO

200

IN1

Transition with two functions. The "selector" variable determines the preselected value for
the subsequent comparison.

Programming \ Programs \ Ladder Diagram (LD)

4.1.2 Transitions in Structured Text
In Structured Text, transitions are defined as an expression without assignment operators. Using logical
operators, comparison operators and functions is permissible.

The following statement is TRUE if the values being compared are unequal and the maximum of both
values does not exceed 100.

(value_a <> value_b) AND (MAX(value_a,value_b)< 100)

Programming \ Programs \ Structured Text (ST)

TM242 - Sequential Function Chart (SFC)

Transitions

4.1.3 Transitions in Function Block Diagram and CFC

In Function Block Diagram (FBD) and Continuous Function Chart (CFC), transitions can be placed in
a function chart network. The result is then assigned to the "Transition" variable. This variable already
exists in the system and doesn't have to be declared.

GT |

ransition

Addition with "greater than" comparison results in the transition

Programming \ Programs \ Function Block Diagram (FBD)

Transitions in Instruction List

Transitions can be executed in the Instruction List (IL) language without an assignment operator. When
called, the expression must return a Boolean result.

The transition below is set to TRUE if "value_a" is greater than 200.

(* Transition is TRUE if *)

(* value_a > 200 *)
LD val ue_a
GT 200

Programming \ Programs \ Instruction List (IL)

TM242 - Sequential Function Chart (SFC) k4

Alternative and parallel branches

5 ALTERNATIVE AND PARALLEL BRANCHES

In SFC, individual steps don't always have to be executed one right after the other. To provide more
flexibility, parallel and alternative branches are permitted.

5.1 Alternative branches

One or more alternative branches are necessary in SFC if a sequence has to be divided up into sev-
eral different paths. In the alternative branch, each step becomes active with its associated transition.
Because of this, the path divides before the alternatives themselves. Transitions are evaluated from left
to right in this process.

The alternative branch can either return to the "main" path or end in a jump.

|
BEFORE

—-goLeft —goRight

LEFT RIGHT

goNext goNext

AFTER
|

Alternative branch fed back via the "goNext" transition

Programming \ Programs \ Sequential Function Chart (SFC) \ Alternative branch

TM242 - Sequential Function Chart (SFC)

Alternative and parallel branches

5.2 Parallel branches

Dividing programs up into several steps considerably increases their clarity. If steps have to be executed
simultaneously, then a parallel branch can be created in SFC. The parallel steps are activated and
deactivated with a common transition.

—goParallel

|
PART PAR2

——termParallel

Two parallel steps

& Parallel steps are executed from left to right.

; Programming \ Programs \ Sequential Function Chart (SFC) \ Parallel branch

TM242 - Sequential Function Chart (SFC) k!

Jumps

6 JUMPS

Jumps are a way to make a sequence of steps a bit more flexible. A
jump is activated by a transition. When active, a jump can transfer termParallel
control to any of the other steps in the program.

An SFC program sequence always ends with a jump, which usually
leads back to the sequence of steps. Alternative and parallel branch- HEAT
es can also end in a jump.

Jumps to transitions are not allowed. Jump to the "HEAT" step

Programming \ Programs \ Sequential Function Chart (SFC) \ Jump

Programming \ Editors \ Graphic editors \ Sequential Function Chart editor \ Inserting SFC
elements

TM242 - Sequential Function Chart (SFC)

71

EXAMPLES

Application example: Fill control

The fill level and temperature of the water in an aquarium need to
be controlled. In this example, there are two processes that can be
handled separately from one another.

A heating element is used to increase the temperature until it reach-
es the setpoint. Once the setpoint has been reached, the heating
element is turned back off.

Schematics of the exercise

Control of the fill level is handled using a pump and a floating switch. Once the floating switch detects
that the fill level is too low, a pump will fill the water in the container until the proper fill level is achieved.
A buffer time will be added to reduce the switching frequency of the pump when waves occur.

Implementation in SFC

Since we are dealing with two independent sequences, we can develop a solution that uses parallel
branches that are executed concurrently. The first part of the parallel branch controls the heating, while
the second branch is responsible for regulating the fill level.

Implementing the fill level control

This exercise should be solved in an SFC program using a parallel branch. Each branch will include the
states that were described in the state diagram.

1) Create an SFC program.
2) Create the parallel branch.
3) Create the steps and jumps.

4) Declare the transitions.
The transitions can be used to evaluate the setpoint temperature and the actual temperature. The
result must be of data type BOOL (GT / LT function blocks, Ladder Diagram programming language).
5) Program the actions and switching commands.
The switch-on and switch-off commands for the heating element and the pump should be implement-
ed using the steps' entry and exit actions.
6) Use an IEC action for the time delay.
The transition that deactivates the waiting step should be switched with an action that has the "D"
qualifier. The delay time should be set to 5 seconds.

7) Test the sequences by setting the transitions in the variable watch window.

One possible solution can be found in the appendix (see Exercise solution: Fill control).

TM242 - Sequential Function Chart (SFC) [l

7.2 Application example: Mixer control

Here we are going to configure a mixing system that mixes water and paint into a dispersion.

gDoWaterValve gDoColorValve
-l —— i ———— e} = —————— — gDiSensFull
— L — — gDiWaterOK
gDiStart
—_——— e —————— — gDiSensLow

gDoDrain

gDoDrainPump

Schematics of a paint mixing system

The mixing program will run according to the following procedure:

* The mixing program waits until the start button is pressed (gDiStart).

* Water is added to the container until the "gDiWaterOK" sensor reacts.

* The stirring unit (gDoMixer) starts and paint is added until the "gDiSensFul
* The mixing time should take 30 seconds.

Sensor reacts.

e The drain (gDoDrainValve) and drain pump (gDoDrainPump) are turned on to empty the con-

tainer.
* The draining process is complete when the "gDiSensLow" signal reacts.
* The starting situation is restored.

Implementing the mixer control

1) Sketch out the necessary SFC.

o

Define the steps.
Define the transitions.
Define the actions.

o

o

2) Determine which steps need an IEC action.

TM242 - Sequential Function Chart (SFC)

The mixing procedure just described should now be programmed. To do so, carry out the following steps:

3) Covert these requirements into an SFC program.

;\ The stirring unit will be active over several steps.

Its functionality can be implemented in a number of different ways:

* Turning the stirring unit on and off in the steps' entry/exit action.

e Stirring unit is a parallel step to the other steps.

* The stirring unit is turned on with an action with the "S" qualifier and turned back off at
the end of the sequence with an action with the "R" qualifier.

One possible solution can be found here: Exercise solution: Mixer control.

TM242 - Sequential Function Chart (SFC) &

Using system variables

8 USING SYSTEM VARIABLES

SFC system variables are variables that the system already "knows" and that have already been given
names. These variables can be declared and used in the program. System variables contain information
about the current state of the SFC program and can influence how the program is executed.

For example, they can be used to determine which step the program is currently executing as well as to
stop or reset the program. Steps that violate their time limits are made known.

A complete list of system variables can be found in the Automation Studio online help documentation.

Procedure for using system variables:

* Select the necessary variable from the help system.
* Declare the system variable with the given data type.
e Use the system variable in the program.

* Display the variable in the variable watch window.

If system variables are not used in the program code, then the compiler will not store them in
memory. It is then not possible for them to be shown in the variable watch window.

Programming \ Programs \ Sequential Function Chart (SFC) \ Sequential Function Chart - Sys-
tem variables

8.1 Usage in applications

The following will describe a few cases where SFC system variables can be used in applications. Some
of these examples will also improve your understanding of using the different diagnostic tools for SFC
programs.

In order to use system variables, they must first be declared and added somewhere in the SFC program's
code. If the system variables should merely be tracked or modified in the variable watch window for
testing purposes, then they can be integrated in the initialization step (Structured Text) with the following
statement:

SFClni t;

Resetting the SFC program

The two system variables "SFCInit" and "SFCReset" can be used to reset the SFC program. If the
"SFCInit" variable is located in the program, then "SFCReset" is not evaluated. In both cases, the pro-
gram is reset and the initialization step called.

With "SFCReset", the initialization step is called cyclically as long as the variable remains TRUE.

With "SFCInit", the initialization step is called once when there is a falling edge of the variable.

When setting the variables "SFCInit" and "SFCReset", the exit actions of active steps are not
called. Setting these variables in essence aborts the program.

TM242 - Sequential Function Chart (SFC)

Using system variables

Task: Reset the SFC program

The following exercises can be applied to the mixer control example program.

1)
2)
3)
4)
5)
6)
7)
8)

Declare the variable "SFCInit" with data type BOOL.
Use the variable in the program code.

Start the program sequence.

Set the system variable in the variable watch window.
Monitor the program's response.

Remove the "SFCInit" variable from the program.
Declare and use "SFCReset".

Compare the different program responses.

Determining the current program step

The program step currently being executed can be read using the "SFCCurrentStep" system variable.
Its data type is STRING.

With parallel steps, the name of the branch furthest to the right is saved.

Task: Determine the current program step

Determine the step currently being executed in your program.

Using time monitoring

In SFC, steps can be configured with a minimum and maximum "buffer time". This buffer time begins
as soon as the step becomes active. The time is then reset when the step has been deactivated. By
default, time monitoring is disabled for the steps.

System variable Data type Function

SFCEnableLimit BOOL Enables time monitoring for steps

SFCError BOOL Indicates whether an error is present
SFCErrorPOU STRING Indicates the program where the error occurred
SFCCurrentStep STRING Indicates the step that caused the error
SFCQuitError BOOL Acknowledges errors, clears the string variables

Table: System variables for detecting timing violations

TM242 - Sequential Function Chart (SFC) [

Using system variables

Task: Using time monitoring

Expand your program so that some of its steps have a maximum time of one minute. Evaluate the timing
violations in the variable watch window.

1) Configure the maximum times for some of the steps.
2) Declare the necessary system variables.

3) Enable time monitoring.

4) Force a timing violation.

5) Evaluate the step that causes the error.

When monitor mode is enabled, a step's running time is shown in its tooltip.

TM242 - Sequential Function Chart (SFC)

9.1

Diagnostic functions

DIAGNOSTIC FUNCTIONS

Diagnostic tools are necessary to ensure that programming languages are used efficiently. This section
will provide a brief list of the troubleshooting tools that can be used for SFC programs.

Monitor mode in SFC

As a central component, monitor mode enables the use of many
diagnostic tools. It can be enabled with the monitor mode icon in the Adivates monitor mode
toolbar. Enabling monitor mode

Monitor mode is used to enable the following diagnostic tools:

Powerflow
e Variable watch

» Debugger (9.3 "Debugger")

Powerflow

Powerflow can be enabled whenever monitor mode is active. It
shows all active steps, transitions and actions in color. This makes
it easy to determine the step currently being executed in the SFC
program as well as which transitions are being switched.

The image shown here illustrates Powerflow when it is active. Active
steps and transitions are shown in color. The step's tooltip displays
information such as the status of the step as well as the time that

has elapsed if time monitoring is enabled. Powerflow in monitor mode with time
monitoring enabled for the step

Diagnostics and service \ Diagnostic tool \ Monitors \ Sequential Function Chart editor in monitor
mode

Variable watch

. . . . & WAIT B0OL FALSE
The variable watch feature makes it possible to observe not just the 4 SPCEmbelmt 80D FALSE
& SFCEmaPOU STRING[E0] &
variables used in the program, but also the SFC system variables SCEmsen STRINGI30]
[& M _TIME SFCStepType
and instance structures of steps and actions. Variables can also be |:§ : . e
agr # x BOOL FALSE
set/modified here. ¢ 1 T THGin_46;_460ns
E ¢ bimElapsed action SFOActonType
= BOOL FALSE
& BOOL FALSE
&1 TIME Thim:
b TIME THOm:
E-¢ AC SFCActonCantrol

F# N BOOL FALSE
4 RO BOOL FALSE
& S0 BOOL FALSE
F# L BOOL FALSE
¢+ D BOOL FALSE
& P BOOL FALSE
F# SDb BOOL FALSE
F# DS B0OL FALSE
4 SL BOOL FALSE
e T TIME Th30:
Fe 0 BOOL FALSE
4 S_FF_SET USINT o

Displaying variables in the variable
watch window

TM242 - Sequential Function Chart (SFC) 44

Diagnostic functions

9.2

Diagnostics and service / Diagnostic tools / Variable watch

SFC variables

System variables

System variables (Using system variables) can be used to determine the status of a program. For ex-
ample, the SFC program can be paused and then continued in "Step into" mode, or the SFC program
can be reset for testing purposes.

The possibilities include the following:

* Determining the active step

* Determining whether transitions are active

* Enabling / disabling time monitoring

* Determining whether time monitoring has been triggered
* Pausing the SFC program

e Continuing the SFC program in "Step into" mode

* Resetting the SFC program

Programming \ Programs \ Sequential Function Chart (SFC) \ Sequential Function Chart - Sys-
tem variables

Instance variables of steps, actions and transitions

The compiler implicitly generates instance variables for each step and action. These instance variables
can then be inserted into the variable watch window and observed.

The step variable, for example, can be used to determine whether the step is currently active or not. The
name of the step variable is exactly the same as the step itself and is of data type BOOL or SFCStepType,
depending on the type of step. If the step is active, then its step variable will be set to TRUE.

Instance variables for actions can be used e.g. to determine the final scan (3.4.2 "Evaluating an action's
'final scan™). The data type is SFCActionType.

WARNING!

= Instance variables for steps and Boolean actions are generated automatically by Automation
Studio when the program is compiled. It is not recommended to manipulate these instances to
affect the sequence. This renders programs unclear and prone to errors.

TM242 - Sequential Function Chart (SFC)

9.3

Diagnostic functions

Debugger

As with textual programming languages, the debugger is also supported in SFC. It allows breakpoints
to be assigned to steps. If the SFC program sequence scans through a step with a breakpoint, then the
SFC program is paused.

Once the debugger is closed, the SFC continues cyclic execution.
All actions can be controlled using the debugger toolbar and message window.

P R¥ BPOIaC MG & &
The debugger toolbar

Setting breakpoints
When monitor mode is enabled, it is possible to set several break-

points for steps using the debugger toolbar. The debugger is not yet

A set breakpoint
active during this process.
Breakpoints that have already been set are indicated by a green
triangle in the step.
Enabling the debugger .
The debugger can then be enabled by clicking on the respective icon [El

in the debugger toolbar. When the program is running, it will pause
when it reaches one of these breakpoints.

Breakpoint reached in a program

The step with the breakpoint where the program has been paused
is indicated by a yellow triangle.

Diagnostics and service \ Diagnostics tools \ Debugger

Task: Test the debugger

Set breakpoints in your last SFC program and test debugger functions.
1) Open the program.

2) Start monitor mode.

3) Set the breakpoints.

4) Enable the debugger.

5) Observe the output in the message window.

TM242 - Sequential Function Chart (SFC) [

Summary

10

SUMMARY

With its visual interface, the Sequential Function Chart programming
language is very well structured and straightforward. It provides an
excellent way to represent state diagram and state machine pro-
grams in the form of steps and transitions.

Because programs are executed sequentially and a range of diag-
nostic tools are available, maintaining and troubleshooting SFC pro-
grams is very easy.

Other processes of a control application can also be called from the
SFC program over defined interfaces. This makes the sequence and
the subfunctions called clear and easy to test.

When combined with other IEC programming languages like Lad-
der Diagram or Structured Text, SFC becomes a very powerful lan-
guage.

Action blocks that use IEC actions with various qualifiers round out
the range of functions available in SFC.

TM242 - Sequential Function Chart (SFC)

Init

——TRUE

ONE

——ready

——steady

THREE

—-go

-[>ONE

The SFC programming language

Appendix: Exercise solutions

11 APPENDIX: EXERCISE SOLUTIONS

11.1 Exercise solution: Fill control

The exercise from Application example: Fill control can be solved like this:

Init The main branch of the parallel
branches corresponds to the two
state diagrams.

-+ TRUE
The transitions between

HEAT ON pUMPI_ON "HEAT_ON" and "HEAT_OFF"

El El contain program code that com-
pares the set temperature with the

~-TooHot - LevelOk actual temperature.

HEAT OFF TIMER_ON D T#5s [bTmElapsed| The switching commands for turn-

E] ing the heating unit on and off are
implemented in the entry actions of

~TooCold [bTmElapsed the heating steps.
L[~HEAT ON PUMP_OFF The pump branch uses an IEC ac-
B E] tion with the "D" qualifier for the de-
lay time and only switches the tran-
Y LevelNotOk sition for the next step in its action.
L[>PUMP_ON The entry action of "PUMP_OFF"
resets the transition of the elapsed
Possible solution - Implementation with parallel branches time as well as the output for the
pump.
Contents of the transitions o = s
The "TooHot" transition could include something . O |
like a Ladder Diagram that compares the setpoint

with the actual temperature value. If the actual tem-
perature is greater than the set temperature, then
the transition is switched.

Transition "TooHot" in Ladder Diagram

TM242 - Sequential Function Chart (SFC) [kl

Appendix: Exercise solutions

11.2 Exercise solution: Mixer control

Init
—+—TRUE
WAIT
—+gDiStart
\WATER
E] [X]
—gDiWaterOK
COLOR Mixer
E] [X] E
—1-gDiSensFull
MIX_TIME D T#30s |[bTmElapsed|
~+bTmElapsed

FILL
E] [X

—1gDiSensLow

H>WAIT

Possible solution for the mixer control system

TM242 - Sequential Function Chart (SFC)

The mixer control system se-
quence (Application example: Mix-
er control) can be solved as shown
in the image provided here.

One step for controlling the mixer
can be used as a parallel branch
for filling the paint and handling the
mixing time.

The entry and exit actions can be
used to switch the actuators such
as the valves and motors, respec-
tively.

To handle time monitoring, the
Boolean action "bTmElapsed" is
called with the qualifier "D T#30s"
and used as the transition to the
next step.

Training Modules

TRAINING MODULES

TM210 — The Basics of Automation Studio

TM211 — Automation Studio Online Communication
TM213 — Automation Runtime

TM220 — The Service Technician on the Job
TM223 — Automation Studio Diagnostics

TM230 — Structured Software Generation

TM240 — Ladder Diagram

TM241 — Function Block Diagram (FBD)

TM242 — Sequential Function Chart (SFC)
TM246 — Structured Text

TM250 — Memory Management and Data Storage
TM261 — Closed Loop Control with LOOPCONR
TM400 — The Basics of Drive Technology

TM410 — ASiM Basis

TM440 — ASiM Basic Functions

TM450 — ACOPOS Control Concept and Adjustment
TM460 — Starting up Motors

TM500 — Basics of Integrated Safety Technology
TM510 — ASiST SafeDESIGNER

TM540 — ASiST SafeMC

TM600 — The Basics of Visualization

TM630 — Visualization Programming Guide
TM640 — ASiV Alarms, Trends and Diagnostics
TM670 — Visual Components Advanced

TM700 — Automation Net PVI

TM710 — PVI Communication

TM711 — PVI DLL Programming

TM712 — PVIServices

TM810 — APROL Setup, Configuration and Recovery
TM811 — APROL Runtime System

TM812 — APROL Operator Management

TM813 — APROL XML Queries and Audit Trail
TM830 — APROL Project Engineering

TM890 — The Basics of LINUX

TM242 - Sequential Function Chart (SFC) X}

‘paAsasal sabueyo [eoluyos)
‘saluedwoo aAloadsal Jiays Jo Aliedoud ay) ale syiewspel) palalsibal ||y

"pantesal s)ybu |1 ‘499 Aq L1020
L'O'LA / ONI-00'IHLZYZINL

www.br-automation.com

	TM242 – Sequential Function Chart (SFC)
	Table of contents
	1 Introduction
	1.1 Training module objectives

	2 Sequential Function Chart
	2.1 General information
	2.2 The basic function of SFC
	2.3 Editor functions in SFC

	3 Steps
	3.1 Initialization steps
	3.2 Entry and exit actions
	3.3 Monitoring the timing of steps
	3.4 Action steps
	3.4.1 Creating and associating actions
	3.4.2 Evaluating an action's 'final scan'

	3.5 Compound step

	4 Transitions
	4.1 Transitions with program code
	4.1.1 Transitions in Ladder Diagram
	4.1.2 Transitions in Structured Text
	4.1.3 Transitions in Function Block Diagram and CFC
	4.1.4 Transitions in Instruction List

	5 Alternative and parallel branches
	5.1 Alternative branches
	5.2 Parallel branches

	6 Jumps
	7 Examples
	7.1 Application example: Fill control
	7.2 Application example: Mixer control

	8 Using system variables
	8.1 Usage in applications

	9 Diagnostic functions
	9.1 Monitor mode in SFC
	9.2 SFC variables
	9.3 Debugger

	10 Summary
	11 Appendix: Exercise solutions
	11.1 Exercise solution: Fill control
	11.2 Exercise solution: Mixer control

	Training Modules

