
Ladder Diagram (LD)

TM240TRE.00-ENG

TM240

2011/09

2 TM240 - Ladder Diagram (LD)

Requirements
Training modules: TM210 – The Basics of Automation Studio

TM223 – Automation Studio Diagnostics

Software Automation Studio 3.0.90 or higher

Hardware None

Table of contents

TM240 - Ladder Diagram (LD) 3

TABLE OF CONTENTS

1 INTRODUCTION.. 4

1.1 Training module objectives... 4

2 LADDER DIAGRAM... 5

2.1 Interesting information about Ladder Diagram... 5
2.2 Features and options.. 5
2.3 The Ladder Diagram editor...6

3 BASIC ELEMENTS OF LADDER DIAGRAM.. 8

3.1 Networks..8
3.2 Order of execution.. 9

4 LADDER DIAGRAM SYMBOLS.. 10

4.1 Contacts.. 10
4.2 Coils...12

5 LOGIC PROGRAMMING... 16

5.1 Binary logic..16

6 CONTROLLING PROGRAM FLOW.. 18

6.1 Conditional jump... 18
6.2 Return..18

7 FUNCTIONS, FUNCTION BLOCKS AND ACTIONS.. 19

7.1 Working with function blocks.. 19
7.2 Compute and Compare blocks... 23
7.3 Using IEC actions... 24

8 EXERCISES... 27

8.1 Exercise - Conveyor belt.. 27
8.2 Exercise - Concrete filling system.. 28

9 SUMMARY... 30

10 APPENDIX..31

10.1 Keyboard shortcuts in the editor...31

Introduction

4 TM240 - Ladder Diagram (LD)

1 INTRODUCTION

Ladder Diagram is a visual programming language that was originally developed as a way to replace pro-
gramming hard-wired relay logic. Ladder Diagram is commonly used and included in the IEC standard1.

Ladder Diagram

In the following chapters, you will be provided an overview of the features of programming with Ladder
Diagram. Individual functions will be explained using examples.

1.1 Training module objectives

With the help of selected examples that describes typical application tasks, you will learn how to work
with Ladder Diagram.

You will be learning about the following:
• ... The possibilities of programming using ladder logic
• ... The basic elements of a ladder diagram
• ... The symbols used in logic programming
• ... How to control program flow

1 The IEC 61131-3 standard is the only valid international standard for programming languages used on pro-
grammable logic controllers. This standard also includes Instruction List, Structured Text and Function Block
Diagram.

Ladder Diagram

TM240 - Ladder Diagram (LD) 5

2 LADDER DIAGRAM

2.1 Interesting information about Ladder Diagram

The original concept of the PLC (programmable logic controller) was developed in the USA in 1968. The
PLC concept was developed as a microprocessor-based, programmable replacement for hard-wired
systems.

The PLC itself was centered around the ladder diagram, which is a schematic representation of a logical
control system based on relay circuitry. At the time, the concept became a very fast way of quickly setting
up and programming a simple logical control system with relatively little training.

Many manufacturers based their programming systems on ladder diagrams. Unfortunately, the lack of
an open standard meant that each vendor's system was slightly different. Many manufacturers often
added special commands in order to increase functionality.

By the beginning of the 1990s, there were literally thousands of PLC manufacturers, each with their
own programming interfaces and command sets. Although the programs developed on different systems
were similar, their structure and the commands they used often varied greatly.

In 1979, a working group was set up by the International Electrotechnical Commission (IEC) to create
a common standard for PLCs. This working group decided to develop a new standard (what became
IEC 61131).

Part III, "Programming Languages for PLCs", was published in 1993 and included the specification for
PLC software. Part III covers PLC configuration, programming and data storage.

2.2 Features and options

Ladder Diagram is a visual programming language. Symbolic representations of electrical circuits are
used that coincide with the schematic symbols used in conventional circuit diagrams. These symbols
and connecting lines are used to program the necessary logic.

Ladder Diagram has the following features:
• Visual programming
• Circuit diagram rotated 90°
• Simple, clear programming
• Self-explanatory
• Easy to diagnose

The Ladder Diagram editor allows you to:
• Use digital inputs / outputs and internal boolean variables
• Use analog inputs / outputs
• Use function blocks, functions and actions
• Control the program flow (jumps, program abort)
• Use tools for diagnostics

Ladder Diagram

6 TM240 - Ladder Diagram (LD)

2.3 The Ladder Diagram editor

Editor

All functions in Ladder Diagram can be operated via the editor's menu bar or the keyboard. The icons in
the toolbar are enabled or disabled depending on the position of the cursor.

The toolbar in the Ladder Diagram editor

How Ladder Diagram icons and the editor are displayed can be cus-
tomized. For example, it is possible in the Ladder Diagram editor's
shortcut menu or from the View menu to show or hide data types,
comments and the scope of connections and variables.

It is also possible to configure the size of networks and ladder dia-
gram symbols with the Tools: Options menu.

The standard width of networks can be configured with the "Mini-
mum count of columns" setting. As long as the network has the same
number of columns as this value or less, then the outputs of all net-
works will align perfectly with one another.

Editor-specific Ladder Diagram settings

All the functions of the Ladder Diagram editor can be operated with the mouse or keyboard (10.1 "Key-
board shortcuts in the editor").

Variables can be assigned to highlighted contacts using the <space bar> or dragging and dropping them
from the logical view.

Assigning variables to contacts with drag and drop

HELP:

Programming \ Editors \ Graphic editors \ Ladder Diagram editor

Programming \ Editors \ Graphic editors \ Ladder Diagram editor \ Toolbar

Project management \ The workspace \ AS Settings \ Ladder Diagram editor settings

Diagnostics

Monitor mode and Powerflow can be used for diagnostics in Ladder Diagram. All logic paths that are
TRUE will then be shown in color. In addition, a variable's tooltip indicates its process value and data
type. The Automation Studio variable watch feature rounds out the range of diagnostic functions.

Ladder Diagram

TM240 - Ladder Diagram (LD) 7

Ladder diagram with Powerflow enabled

Display of variable tooltip

HELP:

Diagnostics and Service \ Diagnostics Tool \ Monitors \ Programming languages in monitor
mode \ Powerflow

Diagnostics and Service \ Diagnostic Tool \ Variable watch

Basic elements of Ladder Diagram

8 TM240 - Ladder Diagram (LD)

3 BASIC ELEMENTS OF LADDER DIAGRAM

The following illustrations show the basic elements of a ladder diagram. On the left side is the permanent
"current-carrying" vertical power rail. To the right is a normally open contact (2), on top of which is the
process variable (3) that is being used to store the value of the contact on the controller. Command lines
(4) lead off to the right where they connect to other contacts or coils.

Basic elements of Ladder Diagram

A ladder diagram essentially consists of two parts. The left side contains the logic that is directed to the
outputs on the right side. Elements on the far right are called coils. The value of the coil can be used
as a digital output, for example.

Logic (green), output or switching command (red)

3.1 Networks

A Ladder Diagram program is divided into smaller program units. These are referred to as networks.

A network consists of contacts, which can be connected in parallel or in series, and coils. The power
supply is at the far left, with the reference potential located to the far right.

A network can consist of 50 rows and 50 columns. It is only complete if at least one coil or result value
has been configured on the far right.

A ladder diagram can consist of multiple networks, with each assigned its own network number in as-
cending order by the system.

Basic elements of Ladder Diagram

TM240 - Ladder Diagram (LD) 9

Network structure

ADVICE:

Comments can be added to each network. One can be inserted using the editor toolbar or by
pressing the <D> key.

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Network

Programming \ Editors \ Graphic editors \ Ladder Diagram editor \ Working with networks

3.2 Order of execution

In the Ladder Diagram program

Networks in a ladder diagram are executed one after the other in ascending order according to the
network number. The order of execution can also be manipulated with jumps that direct to a certain
destination.

In the network

The network is executed from left to right. Explicit signal feedback is prevented by the editor. Signal flow
in the reverse direction is not possible.

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Execution order

Ladder Diagram symbols

10 TM240 - Ladder Diagram (LD)

4 LADDER DIAGRAM SYMBOLS

4.1 Contacts

Contacts with various functions are available. They can be added to the left side of the ladder diagram
and connected to other contacts. They cannot be added to the far right, however, since this area is
reserved for coils. Contacts are of data type BOOL and can be connected to digital inputs/outputs or
function block parameters that have a matching data type.

The result of the logical connective of contacts within a network can be assigned to one or more coils.
Each contact is represented by a variable name, which is defined in the variable declaration window.

The connection between contacts depends on the required control logic. They can be connected in series
or in parallel or in series/parallel combined in order to energize a coil.

Type of contact Symbol
Normally open contact

Normally closed contact

Positive edge

Negative edge

Both edges

Table: Overview of Contacts

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Contacts and coils

4.1.1 Difference between normally closed and normally open contacts

In the industrial environment, we are confronted with the terms "normally closed contact" and "normally
open contact". Both terms belong in the category of contacts, inputs and outputs.

A normally closed contact conducts current as long as it is not being actuated.

A normally open contact conducts current only when it is being actuated.

If a normally closed contact is chosen, a doorbell will ring until someone presses the doorbell button.
Pressing the button opens up the contact, which interrupts the flow of electricity. If using a normally open
contact, the behavior is exactly the opposite.

Ladder Diagram symbols

TM240 - Ladder Diagram (LD) 11

Normally open contact Normally closed contact

4.1.2 Normally open contact

Relationship between the input
signal and result

Normally open contact

As long as the contact is not being actuated, current doesn't flow and
the logic state is FALSE.
When actuated, the physical state changes to "ON" and the result be-
comes TRUE.

4.1.3 Normally closed contact

Relationship between the input
signal and result

Normally closed contact

This contact inverts the status of a variable.
It is used when an input signal does NOT need to be present for the
output to be set.
The state of the output is set to FALSE if the input is set to TRUE.

4.1.4 Contacts for edges

In programming, it is always helpful when rising and falling edges of signal levels can be evaluated.

Positive edges

Relationship between the input
signal and result

Positive edge

This contact is used to detect a positive edge of a signal.
When the value of a variable changes from FALSE to TRUE, i.e. a pos-
itive edge occurs, this contact returns TRUE for one cycle. It is used to
set or reset conditions as well as to count the number of positive edges.

Ladder Diagram symbols

12 TM240 - Ladder Diagram (LD)

Negative edges

Relationship between the input
signal and result

Negative edge

This contact is used to detect a negative edge of a signal.
If the value of a variable is switched from TRUE to FALSE, the result
becomes TRUE for one cycle. This can be done, for example to set or
reset outputs or to count the number of negative edges.

Both edges

Relationship between the input
signal and result

Positive and negative edge

This contact can be used to form a positive and negative edge of a digi-
tal signal.
This behavior corresponds to a parallel connection of the positive and
negative edge.

4.2 Coils

Coils are basic elements of a ladder diagram. They are always placed on the right-hand side of the
ladder diagram as output. Coils can be connected to the right of contacts or to function block outputs. A
network must have at least one coil. It is also possible to use several coils arranged in parallel.

Each coil can be used for digital outputs or internal variables that will be used later in the program as an
input for another network. All contacts are constantly queried while the program is running. If a logical
pathway is found, then the coil becomes TRUE.

Only Boolean variables can be assigned to coils.

Type of coil Symbol
Coil

Negated coil

Set coil

Reset coil

Positive transition coil

Negative transition coil

Table: Overview of coils

Ladder Diagram symbols

TM240 - Ladder Diagram (LD) 13

Type of coil Symbol
Both edges

Table: Overview of coils

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Contacts and coils

4.2.1 Types of coils

Relationship between the input
signal and result

Normally open coil

If a signal has the value TRUE, then the coil is switched on.

Relationship between the input
signal and result

Normally closed coil

If a signal has the value TRUE, then the coil is switched off. At all other
times, it is on.

4.2.2 Set and reset

Set coil

Relationship between the input
signal and result

Set coil

This coil sets a variable to TRUE when a signal is present.
This state remains until the variable is reset. For this reason, this coil is
conditional.

Ladder Diagram symbols

14 TM240 - Ladder Diagram (LD)

Reset coil

Relationship between the input
signal and result

Reset coil

This coil sets a variable to FALSE when a signal is present with the val-
ue TRUE.

4.2.3 Edge outputs

Positive transition coil

Relationship between the input
signal and result

Positive transition coil

This coil sets a variable to TRUE for one cycle when a signal is present
with the value TRUE. For all subsequent cycles with the same signal,
the output stays FALSE.

Negative transition coil

Relationship between the input
signal and result

Negative transition coil

This coil sets a variable to TRUE for one cycle when a signal is present
with the value FALSE. For all subsequent cycles with the same signal,
the value of the variable stays FALSE.

Positive and negative transition coil

Relationship between the input
signal and result

Output for positive and negative edge

This coil unites the function of the positive and negative edge output.

Exercise: Create your first ladder diagram

You will now create your first Ladder Diagram program. When a button is pressed, a lamp should light
up until the button is released.

Ladder Diagram symbols

TM240 - Ladder Diagram (LD) 15

Variables Data types Description
diSwitch BOOL Input used for switching the light on/off

doLight BOOL Output used for energizing the light
Table: Overview of input and output variables

Exercise: Using positive and negative edges

Modify the previous example so that the lamp is turned on at a positive edge of the input and turned off
at a negative edge of the input.

Exercise: Ladder programming using the keyboard

Create the following Ladder Diagram program using only the keyboard. First, find the keyboard shortcuts
for inserting the Ladder Diagram symbols and creating the connection lines.

Then, an actuator should be switched using two signals. When "bntSwitch1" is present, the output is
set and remains so until "bntSwitch2" arrives.

Variables Data types Description
bntSwitch1 BOOL Input used to switch on the light

bntSwitch2 BOOL Input used to switch off the light

doLight BOOL Actuator used for energizing the lamp
Table: Overview of input and output variables

Logic programming

16 TM240 - Ladder Diagram (LD)

5 LOGIC PROGRAMMING

Ladder Diagram is not only used for simple switching operations; it can also be used to implement binary
logic.

5.1 Binary logic

AND connective

AND connective

If two or more contacts are switched in series, the result is a
logical AND connective.
When all of the conditions have been met, the output is set to
TRUE.

OR connective

OR connective

A parallel block is equivalent to an OR connective.
If at least one of these parallel branches is TRUE, then the
output is also TRUE.

Exclusive OR operation

XOR connective

The Exclusive OR connective is a combination of the logical
AND and OR connectives.
If one of the two inputs is TRUE, then the output is also
TRUE. If both inputs are TRUE, then the output stays FALSE.

Branching and merging logic paths

Branching and merging

The logic path can be modified through branching. This al-
lows parallel paths to be taken. A branch needs to be merged
again in order for the logic path to be closed.
Merging can also be branching from the next parallel path
(see image).

ADVICE:

A branch can be created in the editor using the arrow icons in the toolbar or by pressing <ALT>
+ <↓>.

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Simple logic structures

Programming \ Editors \ Graphic editors \ Ladder Diagram editor \ Connection lines

Logic programming

TM240 - Ladder Diagram (LD) 17

Exercise: Programming a flip-flop

The following example combines some of the possibilities available in logic programming. In addition,
the order of execution of this Ladder Diagram program is critical for the application to function correctly.
Several solutions are possible.

Desired program behavior:
• When the user switches the input on, the output should be switched on.
• When the input is switched back off, the output should remain in the same state.
• The next time the input is switched on, the output should be switched off.

Variable name Data type Description
diSwitch BOOL Input that results in a change in status on the output at each

positive edge

doFlipFlop BOOL Output controlled by the input
Table: Overview of input and output variables

Controlling program flow

18 TM240 - Ladder Diagram (LD)

6 CONTROLLING PROGRAM FLOW

6.1 Conditional jump

In addition to the network number, each network can also be given a unique jump label. A conditional
jump can then be placed somewhere in the program sequence to any network with a jump label.

If the condition at the jump is TRUE, then the jump is executed.

Jumps are used to skip over networks in the program. This allows for greater control over program flow.

Conditional jump to the "JumpMark" network

Network with the symbolic name "JumpMark"

ADVICE:

If the jump label doesn't exist, then an error is output in the message window when the program
is compiled.

Error 1490: Label 'JumpMark' not defined.

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Jump / Jump return

6.2 Return

The Return command is used to interrupt the ladder diagram at a certain point. Any subsequent networks
are no longer executed. In the next program cycle, the program executes from the first network until the
return point (if active) or the end of the program.

Program interruption with Return

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Jump / Jump return

Functions, function blocks and actions

TM240 - Ladder Diagram (LD) 19

7 FUNCTIONS, FUNCTION BLOCKS AND ACTIONS

Using functions, function blocks and actions extends the capabilities of a programming language. Func-
tions and function blocks contain program sections that are used more than once.

Functions

... have several parameters and only one return value. The result is
always returned immediately after the function is called.

Function example

Function blocks

...usually have several return values and one instance variable. The
instance variable is needed since function blocks can be spread out
between tasks over a longer period of time, i.e. several cycles. In
addition, the same function block will return different results when
different input parameters are specified. The instance variable rep-
resents the "local memory" of the function block.

Function block example

Actions

... are subroutines or binary activities that can be called. Qualifiers
specify the nature, timing and duration of the call. (7.3 "Using IEC
actions")

Calling an action with the "N" qualifier

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Blocks

7.1 Working with function blocks

Functions and function blocks are managed in libraries. They can be inserted into the program from the
menu bar. If a function block is inserted, its instance variable must be declared.

"Insert function / function block" menu icon

ADVICE:

Only libraries used in Automation Studio are part of the project. If a function or a function block
from another library should be used, then the option "Show external libraries" needs to be
enabled in the selection dialog box.

Functions, function blocks and actions

20 TM240 - Ladder Diagram (LD)

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Blocks

Programming \ Editors \ Graphic editors \ Ladder Diagram editor \ Functions

Programming \ Editors \ General operations \ Dialog boxes for input support

7.1.1 Using analog values

For values that do not have data type BOOL, i.e. analog values, there are no ladder diagram symbols.
These values are connected directly to the function or function block. They can be entered using the
toolbar, the space bar, or by double-clicking on the contact.

Connecting an analog value using the toolbar

Bit addressing of analog values

If analog values should be associated with contacts and coils, then individual bits of analog values can
be connected. To do so, a period "." is placed after the name of the analog value variable. Bits are
numbered in ascending order starting with 0. For example, the second bit of an analog value can be
accessed using aiTemperature.1.

Assigning Bit 2 of "aiRegister" to Bit 5 of "aoRegister"

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Analog value

Programming \ Editors \ Graphic editors \ Ladder Diagram editor \ Analog values

Programming \ Variables and data types \ Variables \ Bit addressing

7.1.2 Extensible functions

Some functions can be extended by the user. An additional input can be added in the function's proper-
ties, for example. The following functions can be expanded in Ladder Diagram:

ADD, AND, SUB, DIV, EQ, GE, GT, LE, LT, MAX, MIN, MOVE, MUL, MUX, OR, XOR

In addition to the above functions, the MOVE function can also be extended. For each extension in this
case, however, an input and an output are added. The assignments are executed in order by row as
shown in the image.

Functions, function blocks and actions

TM240 - Ladder Diagram (LD) 21

Assigned are executed in order, with ValueC = ValueA at the end of the program.

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Blocks

Programming \ Editors \ Graphic editors \ Ladder Diagram editor \ Functions

Programming \ Libraries \ IEC 61131-3 functions \ OPERATOR

7.1.3 Blocks with EN / ENO

To simplify Ladder Diagram programming, function blocks can be enabled or disabled using a bit. This
option is referred to as "EN / ENO" and can be turned on in the properties of each function block indi-
vidually.

An EN signal with a value of TRUE enables the function block. Only the value of the EN signal is passed
on to the ENO output. This allows functional blocks to be connected in series and enabled or disabled
using a bit.

MOVE is executed only when "execute" is TRUE.

By default, the EN / ENO signal option is turned on for function blocks when they are inserted. It can be
turned off using the Tools / Options menu item.

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Blocks with EN/ENO

Project management \ The workspace \ AS settings \ Ladder Diagram editor settings

Exercise: Using function blocks

Several function blocks must be called in this exercise.

The state of an input is to be recorded several times. The collected data will then be used in a visualization
applications. You can manipulate the visualization variables in the variable watch window.

Functions, function blocks and actions

22 TM240 - Ladder Diagram (LD)

Implement the following program behavior:
• The output is to be switched on 3 seconds after the input is enabled.
• After the input has been switched on three times, a warning appears on the visualization de-

vice.
• After acknowledging the warning on the visualization device, it disappears.
• After restarting the CPU, the count value for the number of times the input has been switched

on should remain.
Variable Data type Description
diSwitch BOOL Monitored input

doMotor BOOL Time-delayed output

visButtonReset BOOL Acknowledgment button on the visualization device

visWarning BOOL Warning to be displayed on the visualization device
Table: Overview of input and output variables

Exercise: Configuring parameters using the visualization device

Expand the previous task to include the following functions:
• Number for the limit value until the warning is displayed should be configured.
• The default value for this limit value should be three (variable watch).
• The revised limit values should also remain after the CPU is restarted (RETAIN).
• Display how often the output has been switched on.

Variable Data type Description
visParamLimit UINT Input field for the limit value used for displaying the warning

visActivationCount UINT Output field for how often the output has been enabled
Table: Overview of the additional variables

7.1.4 Creating user functions

Program sections that are used frequently in Automation Studio can be stored in user functions and
function blocks.

These functions and function blocks can be assigned directly to the Ladder Diagram program. This
functionality can then be used several times in the program. In addition, it is also possible to create
your own user library. It can be used throughout the project as often as necessary. In both cases, the
implementation language may be different than the program doing the calling.

Functions, function blocks and actions

TM240 - Ladder Diagram (LD) 23

User function block in the program, user library in the project

HELP:

Programming \ Libraries \ Example: Creating a user library

7.2 Compute and Compare blocks

Logic can be programmed with contacts and the functions available in the OPERATOR library. More
complex calculations and comparisons usually require more than one function, however. This makes
the networks more complex.

The Compute and Compare blocks can be used to enter expressions in a standardized format.

To handle even larger expressions, the Compute and Compare blocks can be extended just like the
extensible functions (7.1.2 "Extensible functions").

ADVICE:

Both blocks can access all local and global variables and constants. In addition, the expression
can include any functions. Your input takes place in "Structured Text format".

7.2.1 Compute block

The Compute Block can be used to calculate an expression. The result is then passed to the block's
output. It is possible to use all variables and constants as well as function calls.

Calculating an expression with the Compare block

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Compute

Functions, function blocks and actions

24 TM240 - Ladder Diagram (LD)

Exercise: Calculate the average value.

The temperature of a room is measured at three different places (aiTemp1, aiTemp2, aiTemp3). The
average temperature (aoTempAvg) should be determined.

7.2.2 Compare block

The Compare block makes it possible to use logical comparison expressions. If the expression is TRUE,
then the output of the Compare block is set until the expression becomes FALSE again.

Using the Compare block

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Compare

Exercise: Controlling room temperature

The set temperature and actual temperature in a room should be compared. If the actual temperature
(aiTempAct) is less than the set temperature (aiTempSet), then the heater (doHeat) should be activated.

To prevent the heater from constantly switching on and off in the target range, it should continue to heat
until the actual temperature is 2°C more than the set temperature.

1) Declare the variables.

2) Insert the Compare block.

3) Enter the comparison expression.

4) Test the application.

7.3 Using IEC actions

Actions can be used to implement subroutines and binary actions. The logic activates the action block
and then calls the associated action with consideration of the qualifier. Qualifiers can be used to specify
whether an action is delayed or limited in duration, for example.

Functions, function blocks and actions

TM240 - Ladder Diagram (LD) 25

Application example

Delayed switching of "doDelayed"

1 "diActivate" calls the action block.

2 The "D T#10s" qualifier specifies that the action is delayed by 10 s.

3 The binary action "doDelayed" is set with a time delay and remains set as long as the
action block is being called.

4 "doInExecution" corresponds to the passed-on "diActivate" signal.
Table: Description of the figure above

Overview of important qualifiers

Some of the most important qualifiers are shown in the table below. A complete overview can be found
in the Automation Studio help documentation.

Character Description
D Action delayed, time literal specification necessary

L Action limited in time, time literal specification necessary

S Action set and remains active until the R qualifier

R Action reset

N Action invoked as long as the action block is active
Table: Important qualifiers

HELP:

Programming \ Programs \ Ladder Diagram (LD) \ Blocks

Programming \ Actions

Programming \ Actions \ Action block - Qualifiers

Exercise: Create a user function block

All of the basic functions and possibilities of Ladder Diagram programming have now been described. In
this exercise, you will be creating a function block.

To do so, you will need to include the contents of the last exercise in the function block.

IN / OUT Name Data type Description
IN Switch BOOL Input for activating the motor

IN visParamLimit UINT Configurable limit where a warning is output

Table: Overview of function block inputs and outputs

Functions, function blocks and actions

26 TM240 - Ladder Diagram (LD)

IN / OUT Name Data type Description
IN oldActivationCount USINT Old counter for number of activations

IN visButtonReset BOOL Acknowledges the warning from the visualization de-
vice

OUT visWarning BOOL Warning for the visualization device

OUT visActivationCount UINT Counter for the total number of activations

OUT Motor BOOL Output for the motor
Table: Overview of function block inputs and outputs

Exercises

TM240 - Ladder Diagram (LD) 27

8 EXERCISES

8.1 Exercise - Conveyor belt

Conveyor belt exercise

A conveyor belt should be driven using a Ladder Diagram program. The application itself has a manual
and automatic mode. A detailed description of function as well as a variable list of inputs and outputs
follows.

Conveyor belt

Exercise: Conveyor belt

The following functions are to be implemented for control purposes:

Manual mode:
• Automatic mode is inactive ("diAutoMode").
• The conveyor belt runs as long as "diManualStart" is active.

Automatic mode:
• Start the conveyor belt if:

° Automatic mode is active "diAutoMode"
° The end switch "diConvEnd" is inactive OR
° The end switch "diConvEnd" and material request "diMachAskMat" is active

• Stop the conveyor belt if:
° The end switch "diConvEnd" is active and material request "diMachAskMat" is inac-

tive

Program structure:
• In manual mode, the networks that handle automatic operation should be skipped.

Batch counter:
• The CTU function block should be used to count the number of items moved on the conveyor.

Exercises

28 TM240 - Ladder Diagram (LD)

Variable Data type Description
diAutoMode BOOL Switches between manual and automatic operation

diManualStart BOOL Starts manual movement of the conveyor belt in manual
mode

diConvEnd BOOL Conveyor belt end switch

diMachAskMat BOOL Material request from the machine

doConvMotor BOOL Motor output that drives the conveyor belt
Table: Overview of inputs and outputs

8.2 Exercise - Concrete filling system

Exercise: Concrete filling system

In a concrete mixing system, concrete is loaded into the truck via a conveyor.

This filling operation is begun by pressing the On button (btnOn).

However, the hydraulic system controlled by a solenoid valve (doValve) cannot be opened until the con-
veyor has been running for 5 seconds and a truck is located beneath the belt (diTruck).

The solenoid valve is shut off as soon as the total permissible weight of the truck has been reached
(diPressure). The conveyor belt should continue to run for an additional 5 seconds, however.

The entire system is immediately shut down if the Off button (btnOff) is pressed.

If there is a disturbance in the conveyor system (diConveyorMotorProtection), then the solenoid valve
and the conveyor belt (doConveyor) should be shut off immediately. If there is a disturbance in the
solenoid valve (diValveProtection), then it is closed immediately, but the belt should continue running
for an additional 5 seconds.

Exercises

TM240 - Ladder Diagram (LD) 29

Schematic representation of the "Concrete filling system" exercise

Summary

30 TM240 - Ladder Diagram (LD)

9 SUMMARY

Programming with Ladder Diagram is still very popular. It was developed to program logical switches as
a replacement for hard-wired relay logic.

Ladder Diagram

Using analog signals and function blocks makes it possible to create high-powered applications using
Ladder Diagram. Additional elements for controlling program flow extend the range of functions. In Au-
tomation Studio, program execution can be traced using Powerflow. Colors are used to display the status
of lines that are conducting electricity.

Appendix

TM240 - Ladder Diagram (LD) 31

10 APPENDIX

10.1 Keyboard shortcuts in the editor

Ladder Diagram editor toolbar

Symbol Keyboard shortcut Symbol Keyboard shortcut

Normally open contact

C

Coil

Shift + C

Normally closed
contact

L

Negated coil

Shift + L

Positive edge

P

Set coil

Shift + S

Negative edge

N

Reset coil

Shift + R

Insert / Delete
connection line to the
left

ALT + ←

Insert function block

F

Insert / Delete
connection line to the
right

ALT + →

Connect analog value
(number, string, etc.)

Space bar

Insert / Delete upwards
connection line

ALT + ↑

Address contact

A

Insert / Delete
downwards connection
line

ALT + ↓ Complete and ver-
ify network

Enter

Insert new column,
insert in-between
contact

INS

Add description

D

Table: Overview of keyboard shortcuts in the editor

Appendix

32 TM240 - Ladder Diagram (LD)

How can I add a contact between existing ones?

To add contacts between existing ones, use the <INS> key to add a new column. Selecting a contact
with a keyboard shortcut will then add it to the open position.

Is there an easy way to change the type of contact?

If a contact is highlighted or the cursor is placed directly in front of it, it can be changed using the keyboard
shortcut for a different contact type.

How can I connect a (different) variable to a contact?

If a contact is selected or the cursor placed directly in front of it, you can press the <space bar> to
activate the field for connecting the variable to the contact. Pressing the <space bar> again will open
up the variable list where an existing variable can be selected.

Solutions

TM240 - Ladder Diagram (LD) 33

SOLUTIONS

Creating the first ladder diagram

The output remains TRUE as long as the input is set.

Using the positive and negative edge

The positive edge is used to set; the negative edge is used to reset.

Ladder programming using the keyboard

Separate on and off switches for the light

Solutions

34 TM240 - Ladder Diagram (LD)

Programming a flip-flop

Network 1 stores the initial state, Network 2 changes the output state with the edge of the input

Solutions

TM240 - Ladder Diagram (LD) 35

Using function blocks

TON for turn-on delay, CTU with reference value PV for warning output

Configuring parameters using the visualization device

Pre-initialization of variables in the declaration window. With the RETAIN option these can be kept after restarting.

Solutions

36 TM240 - Ladder Diagram (LD)

Configurable limit connected to CTU, total count calculated with Compute block

Solutions

TM240 - Ladder Diagram (LD) 37

Creating a user function block

Declaration of the function block instance in the .fun file

Solutions

38 TM240 - Ladder Diagram (LD)

Possible solution for implementing the function block

Solutions

TM240 - Ladder Diagram (LD) 39

Variable declaration for the program calling the function block

Calling the user function block

Compare block

With Compare block

Using the Compare block

Solutions

40 TM240 - Ladder Diagram (LD)

Without Compare block

Same result, but without the Compare block

Compute block

With Compute block

Solution with Compute block

Without Compute block

Solution without Compute block

Solutions

TM240 - Ladder Diagram (LD) 41

Conveyor belt

Possible solution for conveyor belt

Solutions

42 TM240 - Ladder Diagram (LD)

Concrete filling system

Possible solution for concrete mixer

Training Modules

TM240 - Ladder Diagram (LD) 43

TRAINING MODULES

TM210 – The Basics of Automation Studio
TM211 – Automation Studio Online Communication
TM213 – Automation Runtime
TM220 – The Service Technician on the Job
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation
TM240 – Ladder Diagram (LD)
TM241 – Function Block Diagram (FBD)
TM242 – Sequential Function Chart (SFC)
TM246 – Structured Text (ST)
TM250 – Memory Management and Data Storage
TM261 – Closed Loop Control with LOOPCONR
TM400 – The Basics of Drive Technology
TM410 – ASiM Basis
TM440 – ASiM Basic Functions
TM441 – ASiM Multi-Axis Functions
TM450 – ACOPOS Control Concept and Adjustment
TM460 – Starting up Motors
TM500 – Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
TM540 – ASiST SafeMC
TM600 – The Basics of Visualization
TM630 – Visualization Programming Guide
TM640 – ASiV Alarms, Trends and Diagnostics
TM670 – Visual Components Advanced
TM700 – Automation Net PVI
TM710 – PVI Communication
TM711 – PVI DLL Programming
TM712 – PVIServices
TM810 – APROL Setup, Configuration and Recovery
TM811 – APROL Runtime System
TM812 – APROL Operator Management
TM813 – APROL XML Queries and Audit Trail
TM830 – APROL Project Engineering
TM890 – The Basics of LINUX

TM
24

0T
R

E
.0

0-
E

N
G

 /
V

1.
0.

3
©

20
11

 b
y

B
&

R
, A

ll
rig

ht
s

re
se

rv
ed

.
A

ll
re

gi
st

er
ed

 tr
ad

em
ar

ks
 a

re
 th

e
pr

op
er

ty
 o

f t
he

ir
re

sp
ec

tiv
e

co
m

pa
ni

es
.

Te
ch

ni
ca

l c
ha

ng
es

 re
se

rv
ed

.

www.br-automation.com

	TM240 – Ladder Diagram (LD)
	Table of contents
	1 Introduction
	1.1 Training module objectives

	2 Ladder Diagram
	2.1 Interesting information about Ladder Diagram
	2.2 Features and options
	2.3 The Ladder Diagram editor

	3 Basic elements of Ladder Diagram
	3.1 Networks
	3.2 Order of execution

	4 Ladder Diagram symbols
	4.1 Contacts
	4.1.1 Difference between normally closed and normally open contacts
	4.1.2 Normally open contact
	4.1.3 Normally closed contact
	4.1.4 Contacts for edges

	4.2 Coils
	4.2.1 Types of coils
	4.2.2 Set and reset
	4.2.3 Edge outputs

	5 Logic programming
	5.1 Binary logic

	6 Controlling program flow
	6.1 Conditional jump
	6.2 Return

	7 Functions, function blocks and actions
	7.1 Working with function blocks
	7.1.1 Using analog values
	7.1.2 Extensible functions
	7.1.3 Blocks with EN / ENO
	7.1.4 Creating user functions

	7.2 Compute and Compare blocks
	7.2.1 Compute block
	7.2.2 Compare block

	7.3 Using IEC actions

	8 Exercises
	8.1 Exercise - Conveyor belt
	8.2 Exercise - Concrete filling system

	9 Summary
	10 Appendix
	10.1 Keyboard shortcuts in the editor

	Solutions
	Creating the first ladder diagram
	Using the positive and negative edge
	Ladder programming using the keyboard
	Programming a flip-flop
	Using function blocks
	Configuring parameters using the visualization device
	Creating a user function block
	Compare block
	Compute block
	Conveyor belt
	Concrete filling system

	Training Modules

